Podrecznik
programowania
w jezyku Python

ztozytl: Jacek Patka

zrodto: http://uoo.univ.szczecin.pl/~jakubs/news/

Spis tresci:

LEKCIA 1 - WPROWADZENIEcoottitietieteeitesieesie st et ettt ese s st e s et eanesanesaee s et e sbe e et ema e e et e eaeeeb e e b e e s e eanesanesaeesseesree st e st enneennesreenneenrens 5
1.1 @AY L0 T =T oV Vo o PSP 5
1.2 Skad wzig€ i jak zainStaloOWal PYthONacouuiiiieieee ettt st et 5
13) =T = U = PPN 5
1.4 Strony interNetoWe W JEZYKU POISKIMviiiiiie e e st e e e e e e stae e e s tt e e e e ntaeesennsaeesnsbaeeessaeesnnnnens 6

LEKCJA 2 - PODSTAWY PYTHONA ettt ettt ettt e e e ettt et e e e s e s a b ettt e e e e e s s bbb teeeeaesaaaab et eeeeesasasbbeaeeeeeasaanbbbaeeeesesansnnaeeeens 7
2.1 Uruchamianie Pythona W SYStEMIE WINGOWS.......ccuuiiiiiiiiiiiiieeeciteeeeiee e e te e e e staeeestreeeesasaaeesstseeesstaeeesnsaeeessseseennsaeeesnsens 7
I & | [=Yor- o F- W e oL T dU - Tol - T Vi o o o o - PP 7
2.3 KOrzystanie Z POMOCY ON-LiNEcoiiiiiiiiiiii ettt st s et s et e e s s b b e e s e sb e e e ssbae e s snae e s enraeeseanneas 7
O 1 V] o BT o =T =Y n VAT LV V2 o] o - SRR 7
2.5 (WTord o A oY o =] =Y oY VA=Y VA 4 =] 1Y o4 o 1< IR 7
2.6 SYSEEMY JICZDOWE ...ttt sttt e st e s at e st eeab e s bt e e ab e e s bt e e bt e e b e e e bt e s be e e bee e be e e bt e e beeennee et 9
A 1] o1V [or.d o USSP PR 9
R 0 (VT = {1 oy o) o= | oLV USRS 9
2.9 LICZOY FZECZYWISTE .ttt ettt ettt e at e s bt e bt e s bt e bt e s b et e saee e bt e e sae e e bt e e sabeebe e e sabeeabeeesaneenneeennneenes 9
b O o4 o YA 21 o Yo [o 1RSSOt 10
2.11 Tworzenie i zmiana WartoSCi ZMIENNYCHooiiii et e s et e e e st e e e s tta e e esabeeeeeataeseesteeesssaeeeasseeaeannes 10
2.12 Zasady NAzyWania ZMIENNYCH ..c.c.uiiiiiii ettt ettt st e st e e s ab e e s at e e sab e e s ab e e sabeesabeesabeesabeesabeeeabeesabeesareess 12
B I =T o1 1 OO PP PP UPPRTPOPPPOt 14
2.14 PodsStawOWe OPEracCje NA NAPISACK ...uiiiiiiiiiiceiiee e ctieecertt e e eetee e e st e e e e tteeeseataeeesbbeeeasatseeaassaseessseesaansseseasssessassaaesassaneenses 14
R (oY a NN T Y = (o7 o J g = T g - 1 13RSt 15
2.16 KONWErSja NAPISOW NA [ICZDY .eiiueriiiiiiieieiie e ctes ettt e st e e et e e st e e e saba e e e esateeeeansaeeessseeaeansseeeannseasssseaeennsseenannes 15
2.17 CWICZENIA KONTIOINE ...ovvvviiceececte ettt ettt ettt ettt bbb ss et bbbt s s st et e b bbb s s sses b e b et bbb s st et et e bbb s snaseebebesesanas 15

LEKCJA 3 - PIERWSZY PROGRAM ...ttt sttt sttt ettt ettt ettt et s st st sae e bt e a e e ae e aa e e ae e s be e s b e e bt e nessnesanesaeesaeenaeenneenneens 17
3.1 TWOIZENIE NOWEEO PrOSIAMU .uueevrieeterseeiuuureeeeesssasuareteeesssasassssetesssssassssseessssssssssseeessssssssssseeeesssssssssseeeesssssssssssesesssssssnses 17
B0 A (o] 4 T=T 17 = PP PPPPN 17
I T U U Tel - T o | - T 1 T=T o o= =1 0 U PRSPPIt 17
I A Y YV o d =T o TS F= Y2 V7ol o PRSPPIt 17
S A T=1 I =] (U] - ol IS PUPROt 18
3.6 WProwadzani® GANYCN....co.eeei et e e e e e e e st e e et eeseaete e e st t e e e et teeeanaaeeeanteeeeantaeeeanteeeeanreeeearreeeanes 18
3.7 Program na obliczenie sSUmMy dWOCH [ICZDcc.uiiiiiieeeee et e st e e e raee e e st r e e s e naeeesneeaeesnseeeeennns 19
3.8 CWICZENIA KONMTIOINE ...evvvtiieeeceete ettt ettt ettt bbb e st et b bbb s st et ebe bbb s s s es s et et st es s as s et et e bbb s snsnsetetesesanas 19

LEKCJA 4 - PISANIE ROZGALEZIONYCH PROGRAMOW........cvevuieivieieeiiecie ettt s sttt a bbb b et enasas 20
41 (@] 01T o gl e 111V o Yo 1Yol SRS 20
4.2 OPEIATONY NMIBIOWNOSCI. . .uviieeiiiieeetiie e ettt e eette e e ettt e e e sttt e e eetaeeesbaeeaesatseeeassasaesbseseeassassaansssaeasseseaastasseassssaeansseeeanssaeesannseas 20
4.3 (oY e Y Y= W g = T 4 T=Y o 1LY ol o PSS 21
4.4 (o oM e Y Y W g T AV 2T - ol o SRS 21
4.5 POrOWNANTE WIBIOKIOTNE ...ttt ettt e a e bbbttt et s b e sae e sbeesbe e bt eabeeabeeatesbsenbeebean 21
4.6 (oY o) e =YY E= I £= ov.Zo] o 1= SSN 21

4.7 (0] o<1) o gl 1= == [} | F PP PP PPPPPPPPPPPPPPRt 22

4.8 (0] oY1 =) o i U] o o NV (oY ={Tor4 =Y PSSR PUUPRRRRPNt 22
49 (0] oY1 =) oY gl FoTor Y] s TU I [o} =4 o7 1= -{o NS RPUURRRRINt 22
4.10 KolejnoSE WYKONYWaNIA OPEIAatOrOWcceccuiiieeciree e ciiee e ettt e eeite e e st eeesateeeeeasteeessbeeeesstaeeeasssaeesnseeessnsseesanssseesssseeesnsseeeans 22
4.11 INStruKCja WYDOTU PrOSTEEO IFeeiiiieiiiieeee ettt ettt ettt sb e e bt e b e sttt e bt e s bt e e sbbe s bt e e sabe e bt e e smbeennteesaneennees 22
4.12 Instrukcja WyDOoru PEINEEO IF/ELSEcc.iiuiiiieieieie sttt ettt sttt e et e s be s teete st e st et et e beseesbe e st enseneesebessessesneensensans 23
4.13 Instrukcja wyboru WieloKrotNeg0o IF/ELIF/ELSEcccuveeiueeicieeeiieecieeeiteeeeteeeeteeeteeesteeetaeesaae e abeesaseensseessaeensseessseesaseesaseenanes 23
4.14 Tworzenie w programie rozgatezien przy uzyciu inStrukcji WYDOIUc.ooiiiiiiiiiiiiiieee e 23
415 BlOKi WATUNKOWEeiiiiiiiiieeiteeittte ettt ettt ettt e et s bt e bt e s bt e bt e s b et e bt e sab et e be e e be e e abe e be e e sabe e bt e e sabe e bt e e smbeenneeesaneenneas 24
O N VoY A= (<Y AT o 1T I V(=1 =Ll o Uor.d o 1= USSR 24
A.17 CWICZENIA KONTIOINE . ..veviieieectcvcte ettt ettt ettt ettt et e e et a et et et et s s s s e et et et et et essss st et et et et esennsssesesesasesessnsnsetetesesesennnas 25
LEKCIA 'S - TYPY SEKWENCYINE. ...ttt ettt ettt et e e ettt e e e e e s e b ettt e e e e e saaaa bt eeeeee s e anbbeeeeeeee s anbabeeeeesesanbabtaaeesesaanssnaeaeens 26
5.1 TYPY SEKWENCYJNE ereiiiieee ettt e et ee ettt e e sttt e e ettt e e e tteeeesttaee e e ttaeesssaeaeasbsaaeanssseesssaseeansseseanstseseansssessnsseaeaassaeseassseessssenaans 26
5.2 T NP SOWY ieieieieieseee s es e s sese s e s e s e s e s e s e s e e e e e s e s e e e sesesesesesasesasasasasasasasasesssasesssssasasesesesesesssesesssesssesasssesesesesssesssesesnsesesesnsnsnsesns 26
5.3 [Yo 1Y X 1 1 PSSR 27
54 T L A A T T oL U O PPPPPPPPPTPPPRt 27
5.5 TYP NAPISOWY JAKO TYP NIEZMIEINNYuviiiiiiiie ettt et e et e e et e e e et e e e e s ataeeseasaeeesabaeaeassaeesaasaseessbeeeaassaeseassaeessseaanns 28
5.6 INNE LYPY SEKWENCYJNE .ttt ettt ettt et e e bt e bt e e bt e bt e s bt e e bt e e bt e e saee e bt e e sabeebbeesaseeseeesaseesneeesnneenees 28
5.7 TWOIZENIE | UZYWANIE TIST c..iiiiiiieiiie ettt e e e st e e e te e e e rtte e e e s bt e e e e ttaee s sbaeeesabseeeaastaeesansaseesnsseaeaassaeeeassaeesassenannn 29
5.8 [V oo 1V {1 = Yol = 1) S USSR 30
5.9 POFOWNYWANIE LIS ...eiiiieiiiieiie ettt ettt ettt e be e e bt e b e s bt e e bt e e be e e at e e bt e e saee e bt e e sabe e bt e esaseebeeesaneenneeesnneenees 30
5.10 SPrawdzani® ZaWartOSCi lIStcuueiiiiiiie ettt et e e st e e e e tte e e eetaeeesbbeeeasateeeeeassaeesasseeaeansaeeeasssaesassasaeasseeeanns 31
Lo B A I Y YA VY=Y [T oY ATo Y 4T 1V VTP PUPPOt 31
LT A NV o B T AV =Y o AV o T2 1= Vo PRSPPIt 31
5.13 TWOrzenie i UZYWaNIE KFOTEKuviiiiiiii ittt e e e e et b e e e e e e st b e e e e e e e e s sbaaaeaeeeesaansatsaeeeeesanssssneeaessensnnsnns 32
5.14 MOAYTIKACIA KIOTEKvviieeiieeeeeie ettt ettt e e ettt e e ettt e e e e ba e e e e ataeeeeasaaeesabseaaaastseeeanssseesassaeaeansaeeeasssaesnssasesasssneaanses 33
5.15 Typ krotki JaKo typ NIEZMIENNYeoiiiiie ettt et e e st e e e st e e e e e sate e e senseeeessseeeeaaseeeeanseasssseeessnsseeennnes 33
5.16 Konwersja tyPOW SEKWENCYJNYCIN c.c..uviiiiiii ettt et e et e e e ettt e e e e bt eeeesateeeeeabaaeeebbaeaaaasaeseesssaessssaseeasssnaeannes 34
5.17 Petle iterowane po elementach SEKWENC]i.....uiii it e e e e e s et re e e e e e s e abeaeeeeeesennnnenes 34
5.18 CWICZENIA KONMTIOINE.cuveieieiiiceeicectetee ittt st s s a bbb bbb s s s s b s bbb bbb bbbt ssnsene 35
LEKCJA B — PETLE ... ceeeeieee ettt ettt et ettt e e e e ettt et e e e e e s s bbbt e e e e e e s anbe e et e e e e e s ass e et e e e e e sannn b e e e e eeeaeaaanbbeeeeeeeesannbaeeeeaeaesaansnnneaaens 36
6.1 SZYDKIE tWOIZENIE SEKWENC]i ceiiiiiiiiiiiiiee ettt e e e e e s et e e e e e e e sebbtaeeeeeeseaasataeeeeeeseassssessaaseeasanssaneeaaseaas 36
6.2 FOrMAtOWANIE [ICZD ...ttt et en e s sae e seeesr e e r e ear e emneemnesreenreenees 37
6.3 Ustalenie dtugosci pola do WYSWIELIENIA TEKSTU ...eccveiiiiiiieeeiiieeceiee et e e e e s e e et e e s e e e e e s ntreeeeneaeeenreeeaas 38
6.4 (O] oToj (SR o] g s T 1o)TN -1 11 - PO U PUURRRRPNt 39
6.5 [R[S 2T d Y I=Fo o =SS 40
6.6 P4 a1 E Lo T oY 2= oY1= - U o T=] LSRR 40
6.7 Petle 0 NIezZNane] lICZhie POWELOIZENooo et e et e et e e ettt e e e st e e e e ebteeeesabeeaeenbaeseeasaeeenareaaans 42
6.8 Przyktad: wyliczanie Najwiekszego WspPOINEZ0 DZIi€INIKauveeieieiiiiiiiie et e e et e e e e eae e e 42

6.9 Przyktad: wyszukiwanie liCzh PIEIWSZYCReei it e e e s e e e et e e e sat e e e e s steeeeenraeeenreeeans 43

LEKCJA 7 - OBIEKTY, METODY, MODULY, FUNKCJE MATEMATYCZNE ...ttt ettt ettt e e e e e sbeeeeee s 45
7.1 Podstawy podejSCia ODIEKEOWEEOueiiiiii et e e e e e et e e e e e e e ettt e e e e e e e e e s abaaaeeaeeeeassasaeeeaeesennnnrens 45
7.2 Metody OPErUJGCE NA NAPISACKuii it e et e e st e e e st e e e e e s tee e s taeeeastaeeeessaeesssaeeaassseeeansaeesnnreeaans 45
7.3 Metody OPErUJECE NA lISEACK ..ot ettt e sb e e bt e s it e e sbb e e sab e e bt e e s abe e bt e e saneenaees 47
7.4 Y oY U] 1Y OO PO PO TP TSP T PP P PO PPPPRTOP 49
7.5 (UL of =l 4 g = (=T 0 g =T A ov.d o TSR 50
7.6 Przyktad: pisanie WYrazOow WSPAKc.c.eiiuiiiiiiiiieetee ettt et e e et b et e sbe e e bt e e s b e e bt e s b e e bt e e sareennees 52
7.7 Przyktad: wyliczanie odlegtosci miedzy dwoma punktami na pfaszczyZnieccceeveieiieiiiiinieniiieece e 52
7.8 CWICZENIA KONTIOINEeveveeiieceeteectete ettt st a et b s bbbt b s b b a et bbb bbb s st s e et s s b se s s aees 53

LEKCJA 8 - DEFINIOWANIE FUNKCII W PYTHONIE ..ottt ettt et et ettt et e e e s ettt e e e e s e st ae e e e e e s e sanbnaaeeeesesansnnneaeens 54
8.1 DEfiNIOWANTE FUNKC]I...eeutieiiieetee ettt st e e bt e s bt e st e s b e e e bt e s be e e bt e sbee e bt e sabeeenneenane 54
8.2 Usuwanie i redefinioWani® fUNKCi.......iiciiiii ettt ee et e e et e e e st e e e e sate e e seaaaaeesbbeeeesataeeeessaeesssasaeassaeeaannes 54
8.3 Parametry formalne i aktualne, ZmienNNe [IOKAINEcc.uuiii it e e e st e e e et e e e e taeeeeetreeeennes 55
8.4 Wiele argumentOw, WIle rEZUIALOWeiiuiiiiieiii ettt st s bt e st e st e sabe e st esabeesaneesabeesanee s 55
8.5 DomysIne i Nazwane WartoSCi arZUMENTOWccccuiiiieiiiieeiiieeectiee e ettt eeetaeeestbeeeesttaeeesssaeesssseseeasssseeasssaesasseseessseseases 56
8.6 Funkcje z nieznang licZhg PAramMELIOWcccuiiiiiiiie ettt e e te e e st e e e s tb e e e ettaeessabeeeesataeeeessaaesasseaeeassaeaeannes 57
8.7 FUNKCIE FEKUIENCYJNE ..ttt ettt ettt et ettt e sa e e at e s at e s u et e sa b e e bt e e sab e e eas e e sabeeeabeesabeesaseesabeesabeesabeesaseesabeesareess 58
8.8 Przyktad: I0SOWANIE LEKSTU .. .iiiiiiie ettt e st e e e et e e e e e ata e e e sbbeeeeatseeeenssaeessbaeeeantsaseassaeeeassaeeeansseeennnns 59
8.9 Przyktad: wyliczanie odlegtosci miedzy dwoma punktami Na ptaszCzyZniecceeeecvieeicciee i 60
8.10 CWICZENIA KONMTIOINEveeieieeeeeeeceeeeee ettt ettt ettt et e e s ettt et st et et e st e s es e s e et et st et et et et etesesesnan st e et st et et et etenenesens 60

LEKCIA 9 — SEOWNIKI ...ttt ettt ettt et st stte st e ste et e et eat e eb e s be e bt et e eabesabesaeesheesbe e bt emb e eas e eheeebeeebeenbeeabeembeeabesaeesbeesueenbeenseenteans 61
CWICZENIA KONTIOINE ...v.vivieieieectcte ettt ettt bttt a bbbt b s s st bbb s s b st et e bbb b s ssse e et et e bbb b s snt et et e bbb s snsseebebebesanas 64

LEKCIJA 10 — ZBIORY I REKORDYooittiiiiiietiiteieesiee st sttt ettt sttt et r st saee st saeesae e et et e ema e eaeesbe e s b e e bt enesanesanesaeesaeenaeenneenneens 66
4 oY o] o V2SRRI 66
(O] X< = Tl [A = 14 o Lo =Tl o S U PUPROt 67
Przyktad programu WyKorzyStUJGCeZ0 ZhIOrYui ettt e et e e et e e e st e e e st e e e te e e e nabe e e e ebteeeenareeeennnaeas 68
=] e T e 1Y U UPUPPOt 69
Przyktad — [iSta OCEN STUABNTOWccouiiiiieciiee ettt e ettt e e e et e e ee bt e e e eateeeeeabaeeeanssaeesaasaaeeeabbeseeassaeeeaasaseesntbeseenssaesennssnns 70
CWICZENIA KONTIOINE 1.vviveieviiet ettt sttt a st b bbb s s s b b s s s b b s et b s bbb bbb b s b s s bbbt s s see 71

LEKCJA 11 - PRZETWARZANIE LIST ...ttt ettt ettt e e e e ettt e e e e e s bttt e e e e e s a bbbt e e e e e e s e aane bbbt e e e e e eaunbbeeeeeeeesannbsneeeaeeesaansnnneaaens 72

LEKCIA 12 — PLIKI <.t eeee ettt ettt et ettt e e e e et ettt e e e e e asbe bt e e e e e e s anbe et e e e e e e s aasa e e e e e e e e s e aans b e e e e eeeeeaaanbbeeeeaesesannbeneeeaeaeeaansnnneaeens 80

LEKCJA 13 - OPERACIJE NA PLIKACH | KATALOGAGCHeoiieiieiieeeetteete ettt sttt st sttt et n e ne e s ne s saeesmeenneenneenneene 85

LEKCJA 14 — PROSTA BAZA DANYCH ...ttt st ettt ettt ettt ettt st s s st sae e st e et e me e eme e saeeere e s b e e re e neeanesanesreesmeenneenneenrens 90

CWICZENIA KONMTIOINE .ttt et et et e et e e e et e et e sea e e et ase e eeeeseneaeeeseneeetaseneeseeseneeneeseneaeeane e eetesensentesensenteseneentenenaeneanenaeneene 97

LEKCJA 1 - WPROWADZENIE

1.1 Czym jest Python

"Python is a general-purpose open source computer programming language, optimized for quality,
productivity, portability, and integration. It is used by hundreds of thousands of developers around the
world, in areas such as Internet scripting, systems programming, user interfaces, product customization,
and more. Among other things, Python sports object-oriented programming (OOP); a remarkably simple,
readable, and maintainable syntax; integration with C components; and a vast collection of precoded
interfaces and utilities."

- M.Lutz

Twoérca jezyka Python jest Guido van Rossum. Nazwa Python wywodzi sie od tytutu serii programoéw
satyrycznych emitowanych przez telewizje BBC w latach 70. ubiegtego wieku.

David Ascher i Mark Lutz juz w roku 2003 oceniali Swiatowa liczbe uzytkownikéw Pythona na 1 milion. Poza
indywidualnymi osobami wymieniali takie znane kompanie jak Google, Yahoo!, Hewlett-Packard, Seagate,
IBM i Industrial Light and Magic.

Python jest jezykiem interpretowanym, co w stosunku do jezykéw kompilowanych takich jak C czy Pascal z
jednej strony przektada sie na wiekszg fatwos¢ modyfikacji gotowego programu, z drugiej na wieksza
powolnos$é dziatania.

Rzeczywisty sposdb wykonywania programu w Pythonie zblizony jest do jezyka Java. Program zrodtowy
napisany w jezyku Python najpierw kompilowany jest do postaci posredniej (byte-code), ktéra nastepnie
wykonywana jest przez Wirtualng Maszyne Pythona (PVM).

1.2 Skad wzigc i jak zainstalowac¢ Pythona

Interpreter Pythona moze by¢ bezptatnie pobrany ze strony http://www.python.org/

Klasyczny interpreter Pythona napisany zostat w jezyku C i dostepny jest w postaci skompilowanej dla
szeregu systemdw operacyjnych, w tym najpopularniejszych: Windows, Sony PlayStation 2 i rdznych
dystrybucji Linuxa.

Dostepna jest takze odmiana Pythona napisana w jezyku Java, nazywana Jython.

Do nauki kursu zalecana jest wersja Pythona 2.6.

W celu zainstalowania Pythona w systemie Windows, nalezy otworzy¢ pobrany ze strony Pythona plik
http://www.python.org/ftp/python/2.6.6/python-2.6.6.msi.

Pierwsze okno dialogowe, ktére pokaze sie, pozwala wybrac instalacje dla jednego lub wszystkich
uzytkownikow systemu.

Nastepnie wybieramy katalog, w ktérym Python zostanie zainstalowany (zalecane domysine
"C:\Python26").

Kolejne okno pozwala wybra¢ sktadniki, ktére zamierzamy zainstalowacd (zalecane domysine - wszystkie).
W tym momencie program zostanie zainstalowany.

Klikniecie przycisku "Finish" zamyka program instalacyjny.

1.3 Literatura

Literatura w jezyku polskim:

David M. Beazley: Programowanie: Python. Read Me 2002, ISBN 83-7243-218-X.
Chris Fehily: Po prostu Python. Helion 2002, ISBN 83-7197-684-4.

Mark Lutz: Python. Leksykon kieszonkowy. Helion 2001, ISBN 83-7197-467-1.

Marian Mysior (ttum.): Cwiczenia z... Jezyk Python. Mikom 2003, ISBN 83-7279-316-6.

Wydania specjalne czasopism:

http://www.python.org/
http://www.python.org/ftp/python/2.6.6/python-2.6.6.msi

Software 2.0 Extra! 9: Poznaj moc Pythonal!
Literatura w jezyku angielskim:

Michael Dawson: Python Programming for the Absolute Beginner. Premier Press 2003, ISBN 1-592-00073-8.
Mark Lutz: Programming Python, 2nd Edition. O'Reilly 2001, ISBN 0-596-00085-5.

Alex Martelli: Python in a Nutshell. O'Reilly 2003, ISBN 0-596-00188-6.

David Ascher, Mark Lutz: Learning Python, 2nd Edition. O'Reilly 2003, ISBN 0-596-00281-5.

1.4 Strony internetowe w jezyku polskim

Polskie ttumaczenie dokumentacji
http://www.python.org.pl/

Kody Zrédtowe
http://python.kofeina.net/

Kurs Pythona
http://www.mychkm.webpark.pl/python/

http://www.python.org.pl/
http://python.kofeina.net/
http://www.mychkm.webpark.pl/python/

LEKCJA 2 - PODSTAWY PYTHONA

2.1 Uruchamianie Pythona w systemie Windows

Jezeli Python zostat prawidtowo zainstalowany, aby uruchomic interpreter w trybie interaktywnym,
klikamy przycisk "Start", dalej "Programy" ("WSszystkie Programy" w XP), wybieramy folder "Python 2.4", i
na koniec "IDLE (Python GUI)". W oknie, ktére po chwili sie pojawi, powinnismy zobaczy¢ nastepujacy
tekst:

Python 2.4 (#60, Nov 30 2004, 11:49:19) [MSC v.1310 32 bit (Intel)] on win32
Type "copyright", "credits" or "license ()" for more information.

KK R AR A AR A AR AR A AR A AR AR A AR A AR A A AR AR A A KR A AR A A A A AR AR A AR A A AR A AR AR A AR Rk Kk

Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external

interface and no data is sent to or received from the Internet.
P i b db b b b b b b b b b b d b b b db b b b b b b b b i b b b b b b b b b b b b g b g 4

IDLE 1.1
>>>

Radze tak zmniejszy¢ wielko$é okienka IDLE, by widzie¢ zawartos¢ niniejszego dokumentu bez potrzeby
przetaczania sie miedzy okienkami.

2.2 Zalecana Konfiguracja Pythona

Przy pierwszym uruchomieniu Pythona, upewnijmy sie ze wtgczona jest funkcja automatycznego zapisu
programow, oraz ze IDLE koduje polskie znaki we witasciwy sposéb.
Z menu Options wybierzmy Configure IDLE..., kliknijmy zaktadke General, a nastepnie:

- ustawmy Autosave Preference At Start of Run (druga opcja od géry) na No Prompt

- ustawmy Default Source Encoding (przedostatnia opcja) na Locale-defined

- kliknijmy przycisk OK, aby zapamietaé zmiany.

2.3 Korzystanie z pomocy On-Line

Zanim przejdziemy dalej, powinnismy wiedzie¢, gdzie w razie czego szukaé pomocy.

Poprzez klikniecie na menu Help uzyskujemy dostep do pomocy na temat $Srodowiska programistycznego
IDLE (IDLE Help) oraz pomocy na temat jezyka Python (Python Docs F1).

Pomoc na temat IDLE warto przejrze¢ przy pierwszym z nim kontakcie, by zyska¢ ogélny oglad o jego
mozliwosciach. Na szukanie odpowiedzi na konkretne pytania, przyjdzie czas, gdy takowe sie pojawia.
Podobnie z pomocg na temat Pythona: najwazniejsze by wiedzie¢ gdzie szukaé informacji. Strona gtéwna
dokumentacji Pythona zawiera odnosniki do poszczegdlnych jej sekcji. Szczegdlnie interesujaca sekcjg dla
poczatkujgcego programisty Pythona jest "Tutorial", zawierajgcy wprowadzenie do tego jezyka oraz opis
najwazniejszych jego konstrukcji. Opis wszystkich elementdéw jezyka Python znajdziemy w sekcji "Language
Reference", natomiast opis funkcji dofgczanych ze standardowych bibliotek w sekcji "Library Reference".

2.4 Tryb interaktywny Pythona

Widoczny po uruchomieniu trybu interaktywnego Pythona znak zachety ">>>" oznacza gotowos¢
interpretera do wykonywania naszych polecen.

Aby sprawdzi¢ czy interakcja rzeczywiscie dziata, wpiszmy "credits" i wcisnijmy klawisz Enter; po chwili
powinnismy zobaczy¢:

>>> credits
Thanks to CWI, CNRI, BeOpen.com, Zope Corporation and a cast of thousands for
supporting Python development. See www.python.org for more information.

>>>

2.5 Liczby i operatory arytmetyczne

Tryb interaktywny Pythona moze by¢ uzywany jako kalkulator. Wpiszmy:
>>> 242
aby doda¢ dwie dwdéjki. Powinnismy otrzymac nastepujgcy wynik:

4
>>>

Ponizej wyprébujemy pozostate trzy podstawowe operatory matematyczne - odejmowanie, mnozenie i
dzielenie:

>>> 4-1
3
>>> 2%3
6
>>> 4/2
2

>>>

Préba dzielenia przez zero konczy sie w Pythonie wyswietleniem komunikatu o btedzie:

>>> 2/0

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
2/0
ZeroDivisionError: integer division or modulo by zero

>>>

Dodatkowe dwa operatory arytmetyczne dostepne w Pythonie to potegowanie:

>>> 3%%2
9

>>>

oraz reszta z dzielenia:

>>> 8%3
2

>>>

Pojedyncze wyrazenie moze zawieraé wiele operatoréw. Sg one wykonywane w kolejnosci znanej z
algebry:

>>> 244/2

4

>>> 2542%-3%*34+12/3
-25

>>>

W przypadku koniecznosci zmiany kolejnos$ci wykonywania operatoréw uzywamy nawiaséw okragtych:

>>> (345)/2

4

>>> — ((2+41) *(8-3)) **2
-225

>>>

2.6 Systemy liczbowe

Liczby catkowite mogg by¢ w Pythonie zapisywane w systemach pozycyjnych innych niz dziesietny:
6semkowym i szesnastkowym.

Liczbe w systemie 6semkowym zapisujemy poprzedzajac jej wartos¢ znakiem zera (interpreter Pythona
zwraca tg samga wartosc¢ zapisang dziesietnie):

>>> 011
9

>>> 0764
500

>>>

Liczbe w systemie szesnastkowym zapisujemy poprzedzajac jej wartosé dwuznakiem "0x":

>>> 0X100

256

>>> (Oxabc
2748

>>> (0xBADFO0O0D
195948557

>>>

2.7 Typy liczb

Obok liczb catkowitych w Pythonie sg dostepne trzy inne typy liczbowe:
- dtugie liczby catkowite,
- liczby rzeczywiste,
- liczby zespolone.

2.8 Dtugie liczby catkowite

Liczby catkowite majg rozmiar 32 bitow, stad najwiekszg wartoscig jakg moga przyjaé jest 2147483647.
Wieksze wartosci zapamietywane sg jako dtugie liczby catkowite, rozpoznajemy je po umieszczonej na
koncu literze "L":

>>> 99999999999999999
99999999999999999L

>>>

Wartos¢ mniejszg niz 2147483647 mozemy oznaczy¢ jako dtugg sami dostawiajgc litere "L":

>>> 71

7L

>>> O0xDEADFOOL
233496320L

>>>

Jezeli w wyrazeniu wystepuje cho¢ jedna dtuga liczba catkowita, réwniez rezultat jest dtugg liczbg
catkowita:

>>> 2+44*5L
22L

>>>

2.9 Liczby rzeczywiste

Liczby rzeczywiste mogg by¢ w Pythonie przedstawione w formie utamka dziesietnego (z separatorem w
postaci kropki, nie przecinkal):

>>> 2.5
2.5

>>>

lub w notacji naukowej (mantysa"E"+-wyktadnik):

>>> le+3
1000.0
>>>

Wartos$¢ catkowitg mozemy oznaczy¢ jako liczbe rzeczywistg dostawiajgc na koricu ".0". Porownajmy:

>>> 3/2

1

>>> 3.0/2.0
1.5

>>>

Aby odrzuci¢ z wyniku dzielenia czes¢ utamkowaq nalezy uzy¢ podwdjnego znaku dzielenia:

>>> 3.0//2.0
1.0

>>>

Jak widag, jezeli w wyrazeniu wystepuje cho¢ jedna liczba rzeczywista, réwniez rezultat jest liczbg
rzeczywistg. Jeszcze jeden przyktad na to:

>>> 1.5e+1+5000000000L*3
15000000015.0

>>>

2.10 Liczby zespolone

Liczby zespolone sg w Pythonie zapisywane jako suma czesci rzeczywistej i cze$ci urojonej (w celu
prawidtowego wykonywania operacji arytmetycznych, najlepiej by suma byfa ujeta w nawiasy okragte);
czes$¢ urojona oznaczana jest przez dostawiong na jej koncu litere "J":

>>> -1+17
(-1+175)

>>> 0.5+0.57
(0.5+0.573)

>>>

Jezeli w wyrazeniu wystepuje choc jedna liczba urojona, rezultat jest liczbg zespolona:

>>> 19%*2

(-1+03)

>>> 6.8*200L/ (1+273)
(272-54475)

>>>

2.11 Tworzenie i zmiana wartosci zmiennych
Python pozwala uzywaé zmiennych w celu przechowywania wartosci dowolnego typu.

Utworzenie zmiennej polega na nadaniu jej poczgtkowej wartosci. Ponizej utworzymy zmienng a, nadajgc
jej wartosc 4:

>>> a=4
>>>

Sprawdimy, czy a rzeczywisdcie rdéwne jest cztery:

>>> a
4
>>>

Stworzmy nowa zmienna:

>>> b=5
>>>

Aby wykona¢ dwa polecenia Pythona w jednym wierszu rozdzielamy je srednikiem. Sprawdzmy wartosci
obu zmiennych:

>>> a;b
4
5

>>>

W kazdej chwili mozemy zmieni¢ warto$¢ zmienne;:

>>> a=7
>>> a
5

>>>

Do zmiennej mozemy podstawié wartosc innej zmienne;j:

>>>
>>>
5
5
>>> b=3
>>> a;b

>>>

lub dowolnie skomplikowane wyrazenie:

>>> ¢c=1417*%(32/8)

>>> d=(a*b)/ (a+b+2.0)
>>> c;d

69

1.5

>>>

Jak wida¢, zmienna przyjmuje wartosé typu rzeczywistego tylko wtedy, gdy wyrazenie, ktére do niej
podstawiono byto takiego typu (czyli zawierato przynajmniej jedng liczbe rzeczywistg - w powyzszym
przypadku 2.0).

Nowa wartos¢ zmiennej moze by¢ wyliczona o dotychczasowg wartosé jej samej:

>>> a=a+7
>>> b=b-3
>>> c=Cc*2
>>> d=d/3
>>> a;b;c;d
12

0

138

0.5

>>>

Operacje zmiany wartosci zmiennej z wykorzystaniem jej dotychczasowej wartosci mozna zapisac prosciej,
taczac odpowiedni operator arytmetyczny ze znakiem rownosci:

>>> g+=2
>>> p-=

>>> c*=2
>>> d/=2
>>> a;b;c;d
14

-2

276

0.25

>>>

Préba uzycia zmiennej, ktérej wczesniej nie nadano zadnej wartosci, kofczy sie wyswietleniem komunikatu
o btedzie:

>>> e

Traceback (most recent call last):
File "<pyshell#30>", line 1, in -toplevel-

e
NameError: name

>>>

e' is not defined

Istniejgcg zmienng mozna skasowac instrukcjg "del":

>>> del a
>>> a

Traceback (most recent call last):
File "<pyshell#32>", line 1, in -toplevel-
a
NameError: name 'a' is not defined

>>>

a potem stworzy¢ od nowa:

>>> a=71.0
>>> a
71.0

>>>

2.12 Zasady nazywania zmiennych

Nazwy zmiennych w Pythonie mogg by¢ dowolnie dtugie:

>>> NieprawdopodobnieOkrutnieDlugaNazwaZupelnieNiewaznejZmiennej=1234
>>> NieprawdopodobnieOkrutnieDlugaNazwaZupelnieNiewaznejZmienne]j*2
2468

>>>

i moga zawiera¢ zardwno mate, jak i duze litery alfabetu, tak tacidskiego, jak i polskiego. Takie same nazwy,
ale napisane matymi badz duzymi literami, oznaczajg rézne zmienne:

>>> aa=1

>>> Ag=2

>>> gA=3

>>> AA=4

>>> aa;Aa;aA;AA
1

2

3

4

>>>

Zmiennym nie mozna nadawac¢ nazw zastrzezonych dla instrukcji jezyka Python:

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield
def finally in print

Préba uzycia ktéregos z powyzszych stow kluczowych jako nazwy zmiennej, konczy si¢ wyswietleniem
komunikatu o bledzie:

>>> del=1
SyntaxError: invalid syntax

>>>
Nazwy nie mogg zawiera¢ spacji:

>>> dwie nazwy=1
SyntaxError: invalid syntax

>>>

Moga jednak zawiera¢ znak podkreslenia:

>>> jedna_ nazwa=2
>>> jedna_ nazwa
2

>>>

Nazwy zmiennych moga takze zawiera¢ cyfry:

>>> odpowiedz nr 234=7
>>> odpowiedz nr 234
5

>>>

Cyfry jednak nie moga rozpoczyna¢ nazwy zmiennej:
>>> Tmil=12

SyntaxError: invalid syntax
>>>

Znak podkreslenia moze rozpoczyna¢ nazw¢ zmiennej:

>>> _a:1
>>> a

1

>>>

Jednak nie powinno si¢ go w tym miejscu uzywac bez przemyslenia, gdyz w jezyku Python nazwy
zaczynajace sie od " " majg specjalne znaczenie - patrz dokumentacja punkty 6.12, 3.3 5.2.1.

Ponadto, sam znak podkre$lenia zwraca w trybie interaktywnym (tylko w tym trybie!) warto$¢ ostatniego
obliczonego wyrazenia:

>>> T4+3%2
13

>>>

13

>>>

2.13 Napisy

Innym niz liczby rodzajem danych, ktéorymi mozemy postugiwac si¢ w Pythonie sa napisy.
Napisy ograniczamy cudzystowami badz apostrofami.
Jezeli poczatek napisu oznaczyliémy cudzystowem, to tak samo powinni$my go zakonczy¢:

>>> "napis"
'napis’
>>>

Jezeli poczatek napisu oznaczyliSmy apostrofem, to tak samo powinnismy go zakonczyc¢:

>>> 'inny napis'
'inny napis'
>>>

W napisach ograniczonych cudzystowami mozemy uzywaé¢ apostrofdw:

>>> "I can't help"
"I can't help"
>>>

W napisach ograniczonych apostrofami mozemy uzywaé¢ cudzysitowdw:

>>> '"Moby Dick" is thick'
'"Moby Dick" is thick'
>>>

Napisy ograniczone pojedynczymi cudzystowami badz apostrofami muszg konczy¢ si¢ przed koncem linii:

>>> "napis bez konca
SyntaxError: EOL while scanning single-quoted string

>>>
Napisy mogg ciaggnac¢ si¢ przez wiele linii jezeli ograniczymy je potrdjnymi cudzystowami:

>>> """Ten napis
ma

wiele

linii" mn

'Ten napis\nma\nwiele\nlinii'
>>>

2.14 Podstawowe operacje na napisach

Napisy mozemy podstawia¢ do zmiennych tak samo jak liczby:

>>> p="pies"
>>> k="kot"
>>> p

'pies'

>>> k

'kot'

>>>

Na napisach mozemy wykonywa¢ dwie podstawowe operacje - taczenie:
>>> p+k

'pieskot’
>>>

I powielanie:

>>> p*3
'piespiespies’
>>>

mozemy je rowniez taczyc:

>>> 2*%k4+" "4p
'kotkot pies'
>>>

2.15 Konwersja liczb na napisy

Aby skonwertowac¢ liczbe na napis postugujemy sie¢ odwroéconym apostrofem (klawisz nad tabulatorem):

>>> a=2

>>> b=5

>>> "A="+"g°
IA=2I

>>> "B="+"b°
IB:5l

>>> a4+ b’
1251

>>>

2.16 Konwersja napisow na liczby
Jezeli liczby przechowywane sg w postaci napisow:

>>> x="1"
>>> y:n2n
>>> x;y
r]

o

>>>

to operacje na nich bgda dziataty tak jak na napisach, a nie jak na liczbach:

>>> xX+y
1121
>>>

Aby moéc wykona¢ na nich operacje arytmetyczne nalezy najpierw skonwertowac napisy na liczby. Stuzy do
tego jedna z czterech funkcji:

>>> int (x)

1

>>> long (x)

1L

>>> float (x)
1.0

>>> complex (x)
(1+073)

>>>

A zatem

>>> int (x)+int (y)
3

>>>

2.17 Cwiczenia kontrolne

. Wiedzac, ze pierwiastek n-tego stopnia z x réwna si¢ x do potegi 1/n 1 wykorzystujac wiedze o
uzyciu liczb zespolonych w Pythonie, wylicz warto$¢ pierwiastka drugiego stopnia z liczby -17.

Uzywajac instrukcji Pythona oblicz reszt¢ z dzielenia 17 przez 7 i zapamig¢taj wynik w zmiennej
o nazwie Z. Nastepnie, pojedynczym poleceniem Pythona i bez uzycia nawiaséw, przemnoz

zmienng Z przez Z+3.
Spowoduj pojedynczym poleceniem Pythona, by na ekranie 20-krotnie wys$wietlita si¢ warto$¢

wyrazenia 1.2e+3+34.5 kazdorazowo rozdzielona $rednikiem.

LEKCJA 3 - PIERWSZY PROGRAM

3.1 Tworzenie nowego programu

Po uruchomieniu IDLE'a zgtasza si¢ tryb interaktywny Pythona. Aby przej$¢ do edycji nowego programu
nalezy z menu File wybra¢ polecenie New Window.

Otworzy si¢ nowe okno, przeznaczone do edycji programu. Zaczniemy od nadaia proramowi nazwy. W tym
celu wybierzmy z menu File polecenie Save As. Wybieramy folder Moje dokumenty, nast¢pnie wpisujemy
nazwe progl.py. Rozszerzenie nazwy ".py" oznacza program zrodtowy w jezyku Python (rozszerzenie
".pyc" oznacza za$ program skompilowany do postaci posredniej). Klikamy na Zapisz.

3.2 Komentarze

Plik programu w jezyku Python zawiera cigg polecen do wykonania przez interpreter, zapisanych zgodnie ze
sktadnia jezyka. Obok polecen moga znajdowac si¢ w nim rowniez komentarze, opisujace cel lub sposob
dziatania programu lub jego cz¢éci. Komentarze w jezyku Python poprzedzamy znakiem # (sharp).
Zacznijmy nasz program od komentarza - napiszmy:

To jest moj pierwszy program w jezyku Python

1 weisnijmy klawisz Enter. IDLE automatycznie oznacza komentarze kolorem czerwonym.

Komentarze moga wystepowaé w dowolnej linii programu w Pythonie: cokolwiek pojawia si¢ za znakiem #
traktowane jest jako komentarz, az do konca linii.

W kolejnej linii wpiszmy:

"Witaj $wiecie!"

1 weisnijmy klawisz Enter. IDLE automatycznie oznacza napisy kolorem zielonym.

3.3 Uruchamianie programu

W celu uruchomienia programu wybieramy z menu Run polecenie Run Module (lub wciskamy klawisz
F5).

Po chwili nasz program zostanie uruchomiony. Efekt jego dzialania pojawi si¢ w oknie trybu
interaktywnego, a wyglada nast¢pujaco:

>>> RESTART
>>>

>>>

W trybie interaktywnym interpreter Pythona zwraca na ekran rezultat kazdego przetwarzanego wyrazenia.
Kiedy uruchomiony jest program, tak si¢ jednak nie dzieje. Dlatego, mimo iz w drugiej linii programu
znajduje si¢ napis "Witaj swiecie!", W oknie trybu interaktywnego nie zostat on wyswietlony.

3.4 WysSwietlanie danych

Aby wyswietla¢ napisy dowolnej tresci z programu w Pythonie, nalezy postuzy¢ si¢ instrukcjg print.
Przejdzmy do okna z naszym programem "progl.py" i dopiszmy print przed napisem "Witaj swiecie!".
Otrzymamy:

To jest moj pierwszy program w jezyku Python
print "Witaj $wiecie!"

Stowo "print" nalezy do nazw zastrzezonych jezyka Python 1 wyswietlane jest przez IDLE'a na
pomaranczowo.
Uruchommy program klawiszem F5. W oknie trybu interaktywnego powinnismy zobaczy¢:

>>> RESTART
>>>
Witaj Swiecie!

>>>

3.5 Znaki sterujace
Tekst przeznaczony do wyswietlenia moze zawierac specjalne znaki sterujace. Jednym z takich znakow jest
tabulator zapisywany kombinacjg znakéw \t. Przejdzmy do okna z programem "progl.py" i zmienimy lini¢

print "Witaj $wiecie!"
na.
print "\tWitaj $wiecie!"

Po uruchomieniu programu klawiszem F5, w oknie trybu interaktywnego powinnismy zobaczy¢:

>>> RESTART
>>>

Witaj Swiecie!
>>>

Innym znakiem sterujagcym jest znak konca linii oznaczany \n. PrzejdZzmy do okna z programem "progl.py"
1 zmienmy lini¢

print "\tWitaj $wiecie!"
na:
print "\tWitaj\nswiecie!"

Po uruchomieniu programu klawiszem F5, w oknie trybu interaktywnego powinni$my zobaczy¢:

>>> RESTART
>>>

Witaj
Swiecie!
>>>

3.6 Wprowadzanie danych

Wiemy juz, jak program moze cokolwiek wyswietla¢ uzytkownikowi. Teraz dowiemy si¢, jak wprowadzac
dane od uzytkownika do programu.

Przejdzmy do okna z programem "progl.py" 1 zapiszmy go pod nowg nazwa "prog2.py" wybierajac z menu
File polecenie Save As.

Zmienmy pierwszg lini¢ programu na:

To juz moj drugi program w jezyku Python
Nastepnie usunmy drugg lini¢ programu (print "\tWitaj\nswiecie!\a").
Do wprowadzania danych od uzytkownika stuzy wbudowana funkcja raw_input.

Dopiszmy wigc do programu nastepujace dwie linie:

imie = raw input ("Jak masz na imig?")
print "Witaj", imie, "I"

Po uruchomieniu programu klawiszem F5, w oknie trybu interaktywnego powinnismy zobaczy¢:

>>> RESTART
>>>
Jak masz na imie?

W tym momencie program oczekuje na podanie przez nas swojego imienia (i potwierdzenia go Enterem).
Jezeli je tu wpiszemy, zobaczymy ciag dalszy:

Jak masz na imie?Adam
Witaj Adam !

>>>

3.7 Program na obliczenie sumy dwdch liczb

Przejdzmy do okna z programem "prog2.py" i zapiszmy go pod nowg nazwg "suma.py" wybierajac z menu
File polecenie Save As.

Usunmy wszystkie linie programu wciskajac kombinacje klawiszy CTRL+A, a nastepnie klawisz
DELETE.

Sprobujmy teraz napisa¢ samodzielnie program, ktoéry wczyta od uzytkownika dwie liczby catkowite, a
nastepnie wyswietli ich sumeg.

Prawidtowe rozwigzanie znajduje si¢ ponizej:

Ten program liczy sume dwoch liczb catkowitych

x = raw_ input ("Podaj pierwsza z dwoch liczb:")

y = raw input ("Podaj druga z dwoch liczb:")

print "Suma liczb", x, "i", v, "wynosi", int (x) +int (y)

Po uruchomieniu programu klawiszem F5, w oknie trybu interaktywnego powinniSmy zobaczyc¢:

>>> RESTART
>>>

Podaj pierwsza z dwédch liczb:4

Podaj druga z dwédch liczb:3

Suma liczb 4 i 3 wynosi 7

>>>

Konieczno$¢ konwersji wprowadzanych danych (przy pomocy funkcji int), wynika stad iz funkcja
raw_input zwraca tekst wpisany przez uzytkownika, a nie jego wartos¢ liczbowa.
Bez konwersji, program dziatat by nieprawidtowo:

>>> RESTART
>>>

Podaj pierwsza z dwdch liczb:4

Podaj druga z dwdch liczb:3

Suma liczb 4 i 3 wynosi 43

>>>

3.8 Cwiczenia kontrolne

. Napisz program "powiel.py", ktory wezyta od uzytkownika pewien napis, a nastepnie wyswietli
30 kopii tego napisu, kazda w osobnej linii.

Il. Napisz program "pole_tr.py", ktéry obliczy pole trojkata, pod warunkiem ze uzytkownik poda
wysoko$¢ 1 dlugos$¢ podstawy tego trojkata. Uwzglednij, ze wysokos¢ 1 dtugos¢ podstawy moga
by¢ liczbami niecatkowitymi.

II. Napisz program "odsetki.py", ktory obliczy stan konta za N lat, gdzie stan poczatkowy konta
wynosi SPK, a stopa oprocentowania P % rocznie (obowigzuje miesieczna kapitalizacja
odsetek). N, SPK i P podaje uzytkownik programu.

LEKCJA 4 - PISANIE ROZGALEZIONYCH
PROGRAMOW

4.1 Operator rownosci

Po uruchomieniu IDLE'a zgtasza si¢ tryb interaktywny Pythona. Wyprobujemy w nim dzialanie operatoréw
poréwnania.

Najwazniejszym operatorem poréwnania jest operator rownosci.

Rezultatem kazdego operatora poréwnania (w tym operatora rownos$ci) jest wartos¢ typu logicznego,
mogaca przybiera¢ tylko dwie mozliwe wartosci: prawda lub falsz.

Wpiszmy:

>>> 2==
True

Uzyskany rezultat True oznacza, ze prawda jest, ze 2 rowne jest 2.

>>> 2==4
False

Uzyskany rezultat ra1se oznacza, ze nieprawdg jest, ze 2 rowne jest 4.
Powaznym btgdem jest mylenie operator rownosci (= =) z instrukcjg przypisania (=). Porownajmy:

>>> 2=2
SyntaxError: can't assign to literal
>>> a==

Traceback (most recent call last):
File "<pyshell#3>", line 1, in -toplevel-
a==
NameError: name 'a' is not defined
>>> g=2
>>> g==2
True
>>>

4.2 Operatory nierownosci

Do sprawdzania nieréwnosci stuzy nastepujacy operator:

>>> 21=2
False
>>> 21=4
True

Ponizszy zapis rowniez jest poprawny, lecz nie jest zalecany przez tworcoOw Pythona:

>>> 2<>4
True
>>> 2<>2
False

>>>
Ponizszy zapis jest niepoprawny:

>>> 2><4
SyntaxError: invalid syntax

Do sprawdzania ostrej wiekszosci i mniejszosci stuzg nastepujace operatory:

>>> 2>4
False
>>> 2<4
True
>>> 2>1
True
>>> 2<1
False

Do sprawdzania nieostrej wigkszo$ci i mniejszosci stuza nastgpujace operatory:

>>> 2>=4
False
>>> 2<=4
True

>>> 2<=2
True

>>> 2>=2
True

>>>

4.3 Porownania na napisach
W przypadku, gdy porownywane sg napisy, kryterium porownania jest kolejnos¢ leksykograficzna:

>>> 'Ala'=='Ala'
True

>>> 'Ala'!='0la’
True

>>> 'Ala'>='0la’
False

>>> 'Ala'<'Ola'
True

>>> '"A'<'Aa'!
True

>>> "123">"14n
False

4.4 Porownania na wyrazeniach
W przypadku, gdy porownywane sa wyrazenia, kryterium pordwnania jest rezultat wyrazenia:

>>> 22.0/7>3.14

True

>>> ga=14

>>> g**(0.5<4**2

True

>>> (1+2+3+4) *0xA==0100+6%*06
True

>>> 'Ala'*2=="'Ala'+'Ala'
True

4.5 Porownania wielokrotne
Poréwnania moga zawiera¢ jednoczesnie wigcej niz jeden operator:

>>> 1<3<7

True

>>> 1>=1>2

False

>>> 2==2>1.1>-1>-1000
True

>>> 'Ala'<'Ola'<'Zenek'
True

4.6 Porownania laczone
Porownywac mozna takze rezultaty pordwnan:

>>> (1==2)==(2==3)
True

Co nalezy rozumie¢: Rezultat porownania 1 z 2 (falsz) jest taki sam jak rezultat porownania 2 z 3 (réwniez
falsz).
Wigcej przyktadow:

>>> (2>1)==(3>2)
True

>>> (21=2)!1=(31=3)
False

4.7 Operator negacji

Operator negacji zaprzecza wynik porOwnania po nim:

>>> not 1==1
False
>>> not 2==
True

4.8 Operator sumy logicznej

Operator sumy logicznej zwraca prawde tylko wtedy, gdy cho¢ jedno z potaczonych nim wyrazen jest
prawdziwe:

>>> True or False

True

>>> False or not True

False

>>> 1==2 or 1==3 or 1l==1

True

>>> 'Abc'=='Def' or 7>100 or 1==
True

4.9 Operator iloczynu logicznego

Operator iloczynu logicznego zwraca prawdg tylko wtedy, gdy kazde z potaczonych nim wyrazen jest
prawdziwe:

>>> True and True

True

>>> True and False

False

>>> 1==1 and 2==3 or 3==
True

>>> 1==1 and 2==3 and 3==3
False

4.10 Kolejnos¢ wykonywania operatorow

W pierwszej kolejnosci wykonywane sg operatory poréwnania, pdzniej operator negacji, nastepnie iloczynu
logicznego, a na koncu sumy logicznej (takie same operatory wykonywane sa w kolejnosci od lewej do
prawej). Porownajmy:

>>> False and False or True
True

>>> False and (False or True)
False

4.11 Instrukcja wyboru prostego IF

Aby uzalezni¢ wykonanie instrukcji od rezultatu poréwnania, uzywamy instrukcji warunkowej (Uwaga: W
trybie interaktywnym, na koncu kazdej instrukcji ztozonej - np. IF - konieczne jest dwukrotne wcisnigcie
klawisza Enter):

>>> 1if 2==2: print "OK"

OK

Wyswietlito sie "OK", bo warunek po IF jest spetniony.

>>> if 2!=2: print "OK"

Nie wyswietlito si¢ "OK", bo warunek po IF nie zostat spelniony.

4.12 Instrukcja wyboru pelnego IF/ELSE

Mozna ustali¢ wykonanie réznych instrukeji dla obu mozliwych przypadkow:

>>> if 2!=2: print "Dziwne"
else: print "Normalne"

Normalne

4.13 Instrukcja wyboru wielokrotnego IF/ELIF/ELSE

Mozna ustali¢ wykonanie r6znych instrukcji dla réznych przypadkow:

>>> 1if 2==1: print "Dziwne 1"
elif 2==2: print "Normalne"
elif 2==3: print "Dziwne 3"

else: print "Dziwne inne"

Normalne

4.14 Tworzenie w programie rozgalezien przy uzyciu instrukcji
wyboru

Aby przej$¢ do edycji nowego programu nalezy z menu File wybra¢ polecenie New Window.

Otworzy si¢ nowe okno, przeznaczone do edycji programu. Zaczniemy od nadania programowi nazwy. W
tym celu wybierzmy z menu File polecenie Save As. Wybieramy folder Moje dokumenty, nastepnie
wpisujemy nazwe warunekl.py. Klikamy na Zapisz.

Przepiszmy nastgpujacy program:

Pierwszy program rozgaleziony
print "Ten program poréwnuje dwie liczby"
x = input ("Podaj pierwszg z dwoch liczb:")
y = input ("Podaj druga z dwobch liczb:")
print "Liczba", x, "w stosunku do", vy, "jest:", # Przecinek!
if x==vy:

print "taka sama"
elif x>vy:

print "wigksza"
else:

print "mniejsza"

Uwagi do programu:
- Instrukcja input stuzy do wprowadzania liczb (przypomnijmy, ze raw_input wprowadza tekst).
Liczba moze by¢ podana przez uzytkownika explicite, lub w postaci wyrazenia algebraicznego.
- Przecinek na koncu listy parametrow instrukcji print powoduje, ze kolejna instrukcja print
wyswietli tekst w tej samej (a nie nastgpnej) linii

W celu uruchomienia programu wybieramy z menu Run polecenie Run Module (lub wciskamy klawisz
F5).
Po chwili nasz program zostanie uruchomiony. Wprowadzamy dwie liczby i obserwujemy wynik. Np.:

Ten program pordwnuje dwie liczby
Podaj pierwsza z dwdch liczb:5
Podaj druga z dwdch liczb:4.5

Liczba 5 w stosunku do 4.5 jest: wieksza
Lub z uzyciem wyrazen:

Ten program pordwnuje dwie liczby

Podaj pierwsza z dwbéch liczb:6/2

Podaj druga z dwdch liczb:1*3

Liczba 3 w stosunku do 3 jest: taka sama

4.15 Bloki warunkowe

Fragment programu, ktéry wykonywany jest zaleznie od wyniku instrukcji if okreslamy mianem bloku
warunkowego. W jezyku Python blok warunkowy oznaczamy poprzez "wcigcie" tekstu o jeden tabulator w
prawo.

Przyjrzyjmy si¢ koncoéwce naszego programu:

else:
print "mniejsza"

Zat6ézmy, ze chcieliby$my, aby na koncu programu wyswietlal si¢ napis "dzickuje¢". Dopiszmy nastepujaca
linig:

else:
print "mniejsza”
print "Dzigkuje!"

I uruchommy program. Jezeli piszemy liczby 3 i 4, to napis "Dzi¢kuje" zostanie wyswietlony:

Ten program pordéwnuje dwie liczby

Podaj pierwszg z dwédch liczb:3

Podaj druga z dwédch liczb:4

Liczba 3 w stosunku do 4 jest: mniejsza
Dziekuje!

Jezeli jednak wpiszemy liczby 3 i 3, to napis "Dzigkuje" nie zostanie wySwietlony:

Ten program pordéwnuje dwie liczby

Podaj pierwsza z dwédch liczb:3

Podaj druga z dwdch liczb:3

Liczba 3 w stosunku do 3 jest: taka sama

Dzieje si¢ tak, gdyz instrukcja print "Dziekuje!" jest wewnatrz bloku warunkowego po "else:". Aby "Dzigkuje"
wyswietlane bylo niezaleznie od wyniku poréwnania, zmieniamy program poprzez skasowanie tabulatora na
poczatku ostatniej linii:

else:
print "mniejsza"
print "Dzigkuje!"

Teraz, po uruchomieniu programu, zobaczymy:

Ten program pordéwnuje dwie liczby

Podaj pierwsza z dwdch liczb:3

Podaj druga z dwdch liczb:3

Liczba 3 w stosunku do 3 jest: taka sama
Dziekuije!

Wazne: po instrukcji rozgateziajacej program (np. if, elif, else), wszystkie instrukcje nalezace do
rozgalezienia musza by¢ "wciete" w prawo. Koniec gatezi wyznacza pierwsza instrukcja, ktora jest na tym
samym poziomie wysunigcia, co instrukcja rozgatg¢ziajaca.

4.16 Rozgalezienia hierarchiczne

Poszczegoblne galezie programu mozna rozgat¢zia¢ na dalsze gatezie.

Aby przej$¢ do edycji nowego programu nalezy z menu File wybra¢ polecenie New Window.

Otworzy si¢ nowe okno, przeznaczone do edycji programu. Zaczniemy od nadania programowi nazwy. W
tym celu wybierzmy z menu File polecenie Save As. Wybieramy folder Moje dokumenty, nast¢pnie
wpisujemy nazwe warunek2.py. Klikamy na Zapisz.

Przepiszmy nastepujacy program:
Program wielokrotnie rozgateziony

print "Ten program przewidzi Twoja dtugo$¢ zycia"
odp = raw_ input ("Czy palisz papierosy?")

ifodp == "Tak" or odp == "TAK" or odp == "tak" or odp == "no pewnie":
odp = raw input ("A czy si¢ zaciagasz?")
ifodp == "Tak" or odp == "TAK" or odp == "tak" or odp == "no pewnie":
print "Nie pozyjesz dtugo!"
else:
print "To pozyjesz dtugo!"
else:

print "To pozyjesz bardzo dtugo!"

W celu uruchomienia programu wybieramy z menu Run polecenie Run Module (lub wciskamy klawisz
F5). Po chwili nasz program zostanie uruchomiony. Wyprobujmy:

Ten program przewidzi Twoja diugos$é¢ zycia
Czy palisz papierosy?no pewnie

A czy sie zaciagasz?nie

To pozyjesz diugo!

4.17 Cwiczenia kontrolne

. Napisz program "parzyste.py", ktory wezyta od uzytkownika liczbg catkowitg 1 wyswietli
informacje, czy jest to liczba parzysta, czy nieparzysta.

Il. Napisz program "calkowite.py”, ktory wezyta od uzytkownika liczbe 1 wyswietli informacje,
czy jest to liczba catkowita, czy niecatkowita.

1. Napisz program "prk.py", ktory obliczy wszystkie pierwiastki rzeczywiste rownania
kwadratowego o postaci ax*+bx+c=0, gdzie a, b i ¢ podaje uzytkownik. Program powinien na
poczatku sprawdzié, czy wprowadzone réwnanie jest rzeczywiscie kwadratowe.

LEKCJAS -TYPY SEKWENCYJNE
5.1 Typy sekwencyjne

Po uruchomieniu IDLE'a zgtasza si¢ tryb interaktywny Pythona.

Wykorzystamy go do poznania pythonowskich sekwencyjnych typéw danych.

Sekwencyjne typy danych stuza do zapamigtywania wielu wartos$ci w pojedynczej zmiennej, w odrdznieniu
od typow prostych, takich jak int, ktére w pojedynczej zmiennej mogg zachowac tylko jedng warto$¢.

5.2 Typ napisowy
Do tej pory poznali$my juz jeden typ sekwencyjny. Jest nim typ napisowy (string) - patrz punkty 2.13-2.16.
Przypomnijmy, ze wartosci napisow podajemy w cudzystowach lub apostrofach:

>>> txt="napis"
>>> txt2="napis'

I, ze mozemy na nich wykonywa¢ pewne operacje, np.:

>>> txt2+="'owi nierdwny'
>>> print txt2
napisowi nierdéwny

Napisy sa sekwencjami znakow. Kazdy typ sekwencyjny pozwala na dostep do kazdego swojego elementu z
osobna. Aby uzyska¢ dostep do znaku na okre§lonej pozycji podajemy jej indeks (numer porzadkowy
liczony od lewej, zero oznacza pierwszy znak napisu) w nawiasach kwadratowych bezposrednio po napisie:

>>> "abc" [0]
lal

>>> "abc"[1]
lbl

>>> "abc" [2]
ICI

>>> txt[0]
lnl

>>> txt[1]
lal

>>> txt[2]
lpl

>>> txt [3]
lil

>>> txt[4]
ISI

>>> txt[5]

Traceback (most recent call last):
File "<pyshell#22>", line 1, in -toplevel-
txt[5]
IndexError: string index out of range
>>>

Powodem btedu byta proba odczytania znaku o zbyt wysokim numerze, ktorego w napisie nie ma. Aby
pozna¢ dlugos$¢ napisu, postugujemy si¢ funkcja len:

>>> len ("abc")
3

>>> len (txt)

5

>>> len (txt2)
17

>>> len (txt*20)
100

>>>

Zlicza¢ znaki mozemy takze od konca napisu w prawo. Uzywamy w tym celu indeksow ujemnych (-1
oznacza ostatni znak napisu):

>>> "abce" [-1]
ICI

>>> "abc" [-2]
lbl

>>> "abc" [-3]
lal

>>> txt[-1]
ISI

>>>

5.3 Kody ASCII

Pojedynczy znak zapisany jest jako liczba odpowiadajaca kodowi ASCII okre§lonego symbolu graficznego.
Aby pozna¢ kod ASCII okreslonego znaku, nalezy uzy¢ funkcji ord:

>>> ord('A')
65
>>> ord('a')
97
>>> ord("1")
49
>>> ord("2")
50

Parametrem funkcji ord musi by¢ pojedynczy znak, a nie wieloznakowy napis:

>>> ord (txt[0])
110
>>> ord (txt)

Traceback (most recent call last):
File "<pyshell#52>", line 1, in -toplevel-
ord (txt)

TypeError: ord() expected a character, but string of length 5 found
>>>

Aby zamieni¢ kod ASCII na odpowiadajacy mu znak, uzywamy funkcji chr:

>>> chr (65)
IAI
>>> chr (32)

>>> chr (10)

] \nl

>>> chr (49)+chr (48) +chr (50)
102"

>>>

5.4 Fragmenty napisu

Czasami interesuje nas nie pobranie z napisu pojedynczego znaku, ale wykrojenie ciggu znakow. Do
wykrajania fragmentow napiséw uzywamy zapisu z dwukropkiem:

Fragment napisu do 6smego znaku:

>>> txt2[:8]
'napisowi'’

Fragment napisu od dziesigtego znaku:

>>> print txt2[9:]

nierdéwny
Fragment napisu od szostego do dwunastego znaku:

>>> txt2[5:12]
'owi nie'

Co drugi znak z fragmentu napisu od szdstego do dwunastego znaku:

>>> txt2[5:12:2]
'oine'

Mozemy takze uzywac indekséw ujemnych:

>>> txt2[:-9]

'napisowi'’

>>> txt2[-8:]
'nier\xf3wny'

>>> txt2[-12:-5]
'owi nie'

>>> txt2[-12:-5:2]
'oine'

5.5 Typ napisowy jako typ niezmienny

Sekwencyjne typy danych w Pythonie dzielimy na zmienne (mutable) i niezmienne (immutable). Typ
napisowy nalezy do typow niezmiennych.

Typy niezmienne nie mogg zmienia¢ swojej wartosci. A zatem zapis:

>>> txt+=chr (32) +txt2
>>> print txt
napis napisowi nierdéwny

tak naprawde nie zmienia warto$ci zmiennej txt, ale tworzy nowa zmienng o tej samej nazwie, a innej
wartos$ci, starg usuwajac.
Konsekwencja niezmiennosci typu napisowego jest niemoznos¢ zmiany jego elementu:

>>> txt[2]="w'

Traceback (most recent call last):
File "<pyshell#41>", line 1, in -toplevel-
txt[2]="w'
TypeError: object does not support item assignment
>>>

ani fragmentu:
>>> txt[2:4]="wis'

Traceback (most recent call last):
File "<pyshell#93>", line 1, in -toplevel-
txt[2:4]="wis'
TypeError: object doesn't support slice assignment
>>>

Oczywiscie, pozadang operacje mozemy wykonac, inaczej formutujgc polecenie:

>>> txt2=txt[:2]+"w"+txt [3:]
>>> print txt2

nawis napisowi nierdéwny

>>>

5.6 Inne typy sekwencyjne

Napisy moga przechowywac sekwencje znakoéw. Czasami potrzebujemy jednak zapamigta¢ sekwencje
danych nie bedacych znakami, ale np. liczbami lub innymi sekwencjami.

Do przechowywania takich sekwencji stuza w Pythonie: krotki (tuples) i listy (lists).

Elementy zarowno krotek, jak i list mogg by¢ dowolnego typu.

Krotki sg typem niezmiennym. Oznacza to, ze maja z gory ustalong dtugos¢, a zmiana wartos$ci
poszczegbdlnych elementdéw z osobna nie jest mozliwa.

Listy sa typem zmiennym. Oznacza to, ze mozna je tatwo skracac¢ i wydtuzac i jest mozliwa zmiana wartos$ci
poszczegolnych elementow z 0sobna.

5.7 Tworzenie i uzywanie list

Listy tworzymy uzywajac nawiasOw kwadratowych, rozdzielajac ich elementy przecinkami.
Aby stworzy¢ listg trzech liczb naturalnych, napiszemy:

>>> listal = [1, 2, 3]
>>> listal
(1, 2, 3]

Aby stworzy¢ liste ztozong z czterech napisOw, napiszemy:

>>> lista2 = ["pierwszy", txt, txt2, "ostatni"]
>>> lista?2
['pierwszy', 'napis napisowi nier\xf3wny', 'nawis napisowi nier\xf3wny', 'ostatni']

Listy moga zawiera¢ elementy réznych typow:

>>> lista3 = [1.0, 2, "trzy"]
>>> listal3
[1.0, 2, 'trzy']

Listy mogg zawiera¢ inne listy:

>>> lista4d=[[1, 2, 3], ["Nocny", "Dzienny"]]
>>> listad
[[1, 2, 3], ['Nocny', 'Dzienny']]

Listy moga by¢ puste:

>>> lista pusta = []
>>> lista pusta

[]
>>> len(lista pusta)
0

Listy moga zawierac tylko jeden element:

>>> lista jednoelementowa = [1]
>>> lista jednoelementowa

[1]
Mozna odczytywac wybidrczo zawarto$¢ poszczegdlnych elementow listy:

>>> 1listal[0]

1

>>> listaz2[-1]
'ostatni'

Lub ich ciggéw:

>>> listal[l:]
(2, 3]
>>> 1ista2[0::3] # co trzeci element listy

['pierwszy', 'ostatni']
>>> listad[l:]
[['Nocny', 'Dzienny']]

Listy mozna powiela¢:

>>> lista2*=2

>>> lista?2

['pierwszy', 'napis napisowi nier\xf3wny', 'nawis napisowi nier\xf3wny', 'ostatni',
'pierwszy', 'napis napisowi nier\xf3wny', 'nawis napisowi nier\xf3wny', 'ostatni']
>>> []1*1000

[]

>>> [1,2,3]1%0

[]

Okresla¢ ich dhugos¢:

>>> len(lista?)
8

Skracac:

>>> lista?2=lista2[:3]
>>> lista2
['pierwszy', 'napis napisowi nier\xf3wny', 'nawis napisowi nier\xf3wny']

Wydhuza¢:

>>> listal2+=['ostatni']
>>> lista2
['pierwszy', 'napis napisowi nier\xf3wny', 'nawis napisowi nier\xf3wny', 'ostatni']

5.8 Modyfikacja list

Listy sa sekwencjami zmiennymi, mozna wi¢c modyfikowac ich fragmenty:

>>> lista3

[1.0, 2, 'trzy']

>>> lista3[0:2]=["jeden", "dwa"]
>>> lista3

['jeden', 'dwa', 'trzy']

lub pojedyncze elementy:

>>> listal

(1, 2, 3, 4]
>>> listal[2]+=1
>>> listal

(1, 2, 4, 4]

Mozna tez usuwac elementy ze srodka listy, tak samo jak w sekwencjach niezmiennych:

>>> lista2=lista2[:2]+1lista2[3:]
>>> lista2
['pierwszy', 'napis napisowi nier\xf3wny', 'ostatni']

Lub prosciej, z uzyciem instrukcji del, np.:

>>> del lista2[1]
>>> |ista2
['pierwszy', ‘ostatni’]

5.9 Porownywanie list

Porownywanie list odbywa si¢ na zasadzie pordwnywania poszczegdlnych elementow:

- jezeli elementy obu list sg sobie rowne, listy sg rowne

- jezeli listy r6znig si¢ cho¢ jednym elementem, to sa nierowne

- jezeli pierwszy element pierwszej listy jest wiekszy od pierwszego elementu drugiej listy, to

pierwsza lista jest wigksza od drugiej

- jezeli pierwszy element pierwszej listy jest taki sam jak pierwszy element drugiej listy, decyduje
porownanie drugich elementow, itd.
element nieistniejgcy jest zawsze mniejszy od kazdego innego elementu

>>> listal == [1, 2, 4, 4]
True

>>> listal != [1, 2, 3, 4]
True

>>> listal > [1, 2, 2, 5]
True

>>> listal < [1, 2, 4, 4, 5]
True

5.10 Sprawdzanie zawartosci list

Aby sprawdzi¢, czy okreslona warto$¢ znajduje si¢ na liScie, uzywamy operatora in:

>>> 1 in listal

True

>>> 2 not in listal
False

>>> "pierwszy" in listaZ2
True

5.11 Listy wielopoziomowe

W przypadku list wielopoziomowych, to jest takich, ktore zawierajg inne listy, np.:

>>> lista4d
[[1, 2, 31, ['Nocny', 'Dzienny']]

mozliwy jest dostgp do poszczegdlnych elementow list podrzednych poprzez uzycie dwoch indeksow:

>>> listad[1][0]
'Nocny'

>>> listad[0][1]
2

Jako pierwszy podajemy zawsze indeks listy wyzszego rzedu.

5.12 Typ listy jako typ zmienny

W Pythonie wszystkie sekwencje zmienne nie odnoszg si¢ do okreslonych danych, ale do miejsca w
pamigci, w ktérym te dane si¢ znajduja.
W zwigzku z tym przypisanie listy do listy nie kopiuje wartos$ci, a jedynie wskaznik do nich:

>>> listab=listal
>>> listab
(1, 2, 4, 4]

A zatem od tej pory, niezaleznie czy zmieniamy elementy listy 1 czy 5, zmieniamy obie, bo zmianie tak
naprawde podlegaja te same dane:

>>> listal[2]=3
>>> listab

(1, 2, 3, 4]
>>> lista5[2]=5
>>> listal

(1, 2, 5, 4]

Jezeli list¢ utworzono z innych list:

>>> lista6=[0,listal]
>>> lista6
(0, [1, 2, 5, 4]]

To kazda zmiana ich warto$ci bedzie przenoszona na list¢ nadrzedna:

>>> listal[l]=4
>>> lista6
[0, [1, 4, 5, 4]]

Co wigcej, zmiana wartos$ci listy nadrzednej bedzie przenoszona na list¢ podrzgdna:

>>> lista6[1][0]=2
>>> listal
(2, 4, 5, 4]

5.13 Tworzenie i uzywanie krotek

Krotki pod wieloma wzglgdami przypominaja listy, w podobny sposdb tworzymy je i sprawdzamy ich
warto$ci. W odroznieniu od list, krotki sg sekwencjami niezmiennymi, co powoduje réznice w sposobie ich
modyfikacji.

Krotki tworzymy uzywajac nawiasow okragtych, rozdzielajac ich elementy przecinkami.

Aby stworzy¢ krotke z trzech liczb naturalnych, napiszemy:

>>> krotkal=(1,2,3)
>>> krotkal
(1, 2, 3)

Przy czym nawiasy okragle mozna pomijaé:

>>> krotkal=1l,2,3
>>> krotkal
(1, 2, 3)

(Dla zachowania przejrzystosci my tego robi¢ nie bedziemy.)
Krotki mogg zawiera¢ elementy réznych typow:

>>> krotka2=(1.0, 2, "trzy")
>>> krotka?2
(1.0, 2, 'trzy'")

W tym sekwencyjnych

>>> krotka3=(krotkal, listal)
>>> krotka3
(1, 2, 3), [2, 4, 5, 4])

Krotki mogg by¢ puste:

>>> krotka pusta = ()
>>> krotka pusta

()
>>> len (krotka pusta)
0

Krotki mogg zawiera¢ tylko jeden element. Jako Ze zapis (1) oznacza liczbe jeden w nawiasie, tworzac
krotki jednoelementowe obowigzkowo na ich koncu stawiamy przecinek:

>>> liczba=(1)

>>> liczba

1

>>> krotka jednoelementowa=(1,)
>>> krotka jednoelementowa

(1,)

>>> len (krotka jednoelementowa)
1

>>>

Mozna odczytywaé wybidrczo zawarto$¢ poszczegolnych elementéw krotki:

>>> krotkal[l]
2

>>> krotka3[-1]
(2, 4, 5, 4]

Lub ich ciggéw:

>>> krotkal[l:]

(2, 3)

>>> krotkal[::2] # co drugi element krotki
(1, 3)

Krotki mozna powielaé:

>>> krotkal*=2
>>> krotkal
(ll 2/ 3/ l/ 2, 3)

Skracac:

>>> krotkal=krotkal[:3]
>>> krotkal
(1, 2, 3)

Wydhuza¢:

>>> krotkal=krotkal+ (4,)
>>> krotkal
(1, 2, 3, 4)

5.14 Modyfikacja krotek

Krotki s3 sekwencjami niezmiennymi, wigc nie mozna modyfikowac ich fragmentow:

>>> krotkal[2]=1

Traceback (most recent call last):
File "<pyshell#151>", line 1, in -toplevel-
krotkal[2]=1
TypeError: object does not support item assignment

Oczywiscie, pozadang operacje mozemy wykonaé, inaczej formulujac polecenie:

>>> krotkal=krotkal[:2]+(1,)+krotkal[3:]
>>> krotkal
(1, 2, 1, 4)

5.15 Typ krotki jako typ niezmienny

Krotki sg sekwencjami niezmiennymi, w zwigzku z tym przypisanie krotki do krotki kopiuje faktyczne
wartosci, a nie jedynie wskaznik do nich:

>>> krotkad=krotkal
>>> krotkaid

(1, 2, 1, 4)
>>> krotkal=(1,2,3,4)
>>> krotka4d
(1, 2, 1, 4)

5.16 Konwersja typow sekwencyjnych

W konwersji typow sekwencyjnych uzywamy nastepujacych instrukeji:
- list zamienia typ sekwencyjny na listg

>>> lista7=1list (krotkab)
>>> lista’

(2, 4, 5, 4]

>>> lista8=list ("abcd")
>>> 1lista8

['a', lbl, 'C', Idl}

- tuple zamienia typ sekwencyjny na krotke

>>> krotkabS=tuple(listal)
>>> krotkab

(2, 4, 5, 4)

>>> krotka6=tuple ("abcd")
>>> krotka6

(lal, lbl, 'C', ldl)

- str zamienia typ sekwencyjny na napis

>>> str (krotkab6)
"(lal, lbl, 'C', ldl)"
>>> str(lista7)

'[2, 4, 5, 41"

Lub krocej, przy uzyciu odwréconych apostrofow:

>>> “krotka6’

"(lal, lbl, 'C', ldl)"
>>> “lista7’

'[2, 4, 5, 41°

5.17 Petle iterowane po elementach sekwencji

Aby wykonac jakie$ operacje na wszystkich lub wybranych elementach sekwencji, najprosciej jest postuzy¢

si¢ petla for ... in.

Przykladowo, aby wyswietli¢ w kolejnych liniach wszystkie elementy sekwencji listal napiszemy:

>>> for a in listal:
print a

O N

gdzie a jest przyktadowa zmienng, ktéra w danym powtdrzeniu petli przyjmuje warto$¢ kolejnych

elementow sekwencji.

Aby pozna¢ numer aktualnego powtorzenia petli, postugujemy sie funkcja enumerate:

>>> for nr, wartosc in enumerate(lista?2):
print nr,
print wartosc

0 pierwszy
1 ostatni

gdzie nr jest zmienng zawierajgca aktualny numer obiegu petli, a wartosc zmienng, ktora w danym
powtdrzeniu petli przyjmuje warto$¢ kolejnych elementow sekwencji.

Mozemy wykonywac¢ petle tylko dla fragmentu sekwenciji:

>>> for i in lista7[1:3]:
print i,i**2

4 16
5 25

A wewnatrz petli wykonywac instrukcje warunkowe:

>>> for i1 in lista7:
if 1i>0:
print i, i**0.5

2 1.41421356237
4 2.0
5 2.2360679775
4 2.0
5.18 Cwiczenia kontrolne
l. Napisz program "parzyste2.py", ktory wezyta od uzytkownika liczbe catkowita 1 bez uzycia
instrukcji if wyswietli informacje, czy jest to liczba parzysta, czy nieparzysta.
Il. Napisz program "numer.py", ktory zamieni wprowadzony przez uzytkownika cigg cyfr na forme
tekstowa:
a. znaki nie bedace cyframi majg by¢ ignorowane
b. konwertujemy cyfry, nie liczby, a zatem:
I. 911 to "dziewie¢ jeden jeden"
ii. 1100 to "jeden jeden zero zero"

LEKCJA 6 - PETLE

6.1 Szybkie tworzenie sekwencji

Po uruchomieniu IDLEa zgtasza sie tryb interaktywny Pythona.
Wykorzystamy go do nauki szybkiego tworzenia sekwencji.
Do tworzenia sekwencji, ktérych elementy nalezg do ciggu arytmetycznego, uzywamy funkcji range:

>>> range (10)
(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Pojedynczy parametr oznacza koniec (tj. pierwszy element nie nalezgcy do) sekwencji (pierwszym elementem zawsze
jest zero).
Aby wyswietli¢ kwadraty liczb od 0 do 9, napiszemy:

>>> for x in range (10):
print x,'** 2 =',x*x

* x
* x

Il
SO

* x

* % :9

16
25
36
= 49
64
= 81

* x

* x

* x

* x

* x

* x

O 0 Jo Ul WM O
NDDODNDNDDNDDNDDNDDNDDNDDN
Il

Aby zmienié¢ pierwszy element tworzonej sekwencji uzywamy funkcji range z dwoma parametrami (poczatek i
koniec):

>>> range(1,10)
[ll 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9}

Aby wyswietli¢ kwadraty liczb od 3 do 9, napiszemy:

>>> for x in range (3,10):
print x,'** 2 ="' x*x

* % = 9

16
25
36
= 49
= 64
= 81

* x

* x

* *

* *

* Kk

O O J oy U b W
NDDDNDDNDDNDDNDDN
Il

* Kk

Aby zmieni¢ krok pomiedzy elementami tworzonej sekwencji uzywamy funkcji range z trzema parametrami
(poczatek, koniec i krok):

>>> range(1,10,2)
(1, 3, 5, 7, 9]

Mozemy w ten sposdb réwniez odwrdcic kolejnos¢ elementdw, poprzez uzycie ujemnego kroku:

>>> range(9,0,-1)
(9 8, 7, 6, 5, 4, 3, 2, 1]

Aby wyswietli¢ kwadraty liczb nieparzystych malejgco od 9 do 1, napiszemy:

>>> for x in range(9,0,-2):

print x,'** 2 =',x*x
9 ** 2 = 81
7 ** 2 = 49
5 **x 2 = 25
3 **x 2 =9
1 ** 2 =1

6.2 Formatowanie liczb

Celem petli czesto jest wyswietlenie kolumny liczb. Aby liczby wyswietlane byty w nalezyty sposéb i w pozgdanym
miejscu uzywamy operatora formatowania % w potgczeniu z ciggiem formatujgcym. Cigg formatujgcy sktada sie ze
znaku %, po ktérym nastepujg opcje formatowania, ilos¢ znakdéw przeznaczonych do wyswietlenia oraz typ danej do
wyswietlenia (przy czym tylko trzeci element — tj. typ danych jest wymagany).

Typ danej sygnalizujemy pojedynczg litera. | tak:

e Litera s oznacza napis (konwertuje kazdy typ danych na tekst), np.:

>>> print "%s" % 1

1

>>> print "%s" % range(6)
(0, 1, 2, 3, 4, 5]

>>> print "%s" % "txt"
txt

e Litera c oznacza pojedynczy znak w kodzie ASCII, np.:

>>> print "%c" % "A"
A
>>> print "%c" % 077
?
>>> print "%c" % 33

!
>>> print "%c" % "Abc" # biad!

Traceback (most recent call last):
File "<pyshell#44>", line 1, in -toplevel-
print "%c" % "Abc"
TypeError: %c requires int or char

e Literaioznacza dziesietng liczbe catkowitg (konwertuje kompatybilny typ danych na liczbe catkowitg), np.:

>>> print "%i" % Oxff

255

>>> print "%i" % 2.2

2

>>> print "%i" % "11" # biad!

Traceback (most recent call last):
File "<pyshell#32>", line 1, in -toplevel-
print "$i" & "11" # biad!
TypeError: int argument required

e Litera x oznacza szesnastkowg liczbe catkowitg (konwertuje kompatybilny typ danych na liczbe catkowitg),

np.:
>>> print "%x" % Oxff
ff
>>> print "%x" $ 2.2
2

>>> print "%x" % 22
16

e Litera o oznacza 6semkowgq liczbe catkowita (konwertuje kompatybilny typ danych na liczbe catkowitg), np.:

>>> print "%o" % Oxff

377

>>> print "%o" % 2.2
2

>>> print "%o" % 077
77

e Litera e oznacza liczbe zmiennopozycyjng w postaci wyktadniczej, np.:

\o
=

>>> print "%e"
1.000000e+000
>>> print "%e" % 1.23
1.230000e+000
>>> print "%e" % 123
1.230000e+002

o\

X

e Litera f oznacza liczbe zmiennopozycyjng w postaci utamka dziesietnego, np.:

>>> print "$f" % 123

123.000000
>>> print "%f" % 1.23
1.230000

6.3 Ustalenie dlugosci pola do wyswietlenia tekstu

Aby przekonad sie na czym polega zaleta formatowania, wyswietlmy tabele kwadratéow i szesciandw wybranych liczb:

>>> for x in range(5,100,10):
print x,x**2,x**3

5 25 125

15 225 3375

25 625 15625
35 1225 42875
45 2025 91125
55 3025 166375
65 4225 274625
75 5625 421875
85 7225 614125
95 9025 857375

Jak widac¢ kolumny liczb wyswietlane sg nierdwno. Sprébujmy ustali¢ w formacie dtugosc¢ pola do wyswietlenia kazde;j
liczby na 4, jej kwadratu na 6, a szescianu na 8:

>>> for x in range(5,100,10):
print "%$4i%6i%8i" % (x,x**2,x**3)

5 25 125
15 225 3375
25 625 15625
35 1225 42875
45 2025 91125
55 3025 166375
65 4225 274625
75 5625 421875
85 7225 614125
95 9025 857375

Jak wida¢, efekt teraz jest znacznie bardziej przejrzysty.
Formatujac liczby zmiennopozycyjne mozemy takze ustali¢ nie tylko catkowitg dtugosc, ale takze liczbe
wyswietlanych miejsc po przecinku (np. na 3):

>>> for x in range(5,100,10):
print "Pierwiastkiem liczby %2i jest %5.3f" % (x,x**0.5)

Pierwiastkiem liczby 5 jest 2.236
Pierwiastkiem liczby 15 jest 3.873
Pierwiastkiem liczby 25 jest 5.000
Pierwiastkiem liczby 35 jest 5.916
Pierwiastkiem liczby 45 jest 6.708
Pierwiastkiem liczby 55 jest 7.416
Pierwiastkiem liczby 65 jest 8.062
Pierwiastkiem liczby 75 jest 8.660
Pierwiastkiem liczby 85 jest 9.220
Pierwiastkiem liczby 95 jest 9.747

6.4 Opcje formatowania

Opcje formatowania modyfikujg sposdb wyswietlania liczb. Np. opcja + wymusza wyswietlanie znaku liczby, takze dla
liczb nieujemnych:

>>> for x in range (-10,11):

o

print "$+i" % x,

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10

Zatézmy, ze chcemy otrzymac tabele przeliczajaca liczby dziesietne na dsemkowe i szesnastkowe:

>>> for x in range(5,100,10):
print "$31%60%5x" % (x,X,X)

5 5 5
15 17 £
25 31 19
35 43 23
45 55 2d
55 67 37
65 101 41
75 113 4b
85 125 55
95 137 5f

Nie jest to jednoznaczne. Uzycie opcji # spowoduje, ze liczby dsemkowe i szesnastkowe bedg poprzedzane
wiasciwym prefiksem:

>>> for x in range (5,100,10):
print "$3i%$#60%#5x" % (x,x,X)

5 05 0x5
15 017 Oxf
25 031 0x19
35 043 0x23
45 055 0x2d
55 067 0x37
65 0101 0x41
75 0113 Ox4b
85 0125 0x55
95 0137 0x5f

Z kolei uzycie opcji - spowoduje, ze liczby beda wyréwnywane do lewej, a nie prawej krawedzi swojego pola:

>>> for x in range(5,100,10):

print "%$-3i%#-60%#-5x" % (X, X,X)

5 05 0x5

15 017 Oxf

25 031 0x19
35 043 0x23
45 055 0x2d
55 067 0x37
65 0101 0x41
75 0113 O0Ox4b
85 0125 0x55
95 0137 Ox5f

Natomiast uzycie opcji 0 spowoduje, ze pole przeznaczone na liczby bedzie wypetniane nie spacjami, lecz zerami:

>>> for x in range(5,100,10):
print "%31i $#040 $#04x" % (X,X,X)

5 0005 0x05
15 0017 OxOf
25 0031 0x19
35 0043 0x23
45 0055 0x2d
55 0067 0x37
65 0101 0x41
75 0113 Ox4b
85 0125 0x55
95 0137 Ox5f

6.5 Petle zagniezdzone
Petle mogg zawierac inne petle — méwimy wtedy o nich, ze sg zagniezdzone.
Sprébujmy wygenerowac tabliczke mnozenia:

>>> for x in range(l,11):
print # przejscie do nowego wiersza
for y in range(1l,11):

[

print "$3i" & (x*y),

3 4 5 6 7 8 9 10
6 g8 10 12 14 16 18 20
9 12 15 18 21 24 27 30
8 12 16 20 24 28 32 36 40
10 15 20 25 30 35 40 45 50
12 18 24 30 36 42 48 54 60
14 21 28 35 42 49 56 63 70
16 24 32 40 48 56 64 72 80
18 27 36 45 54 63 72 81 90
20 30 40 50 60 70 80 90 100

6 6 Zmiana przebiegu petli

Nie wszystkie instrukcje w petli muszg by¢ wykonane za kazdym razem. Do pomijania wszystkich instrukcji
znajdujacych sie po niej w petli stuzy instrukcja continue.

Zatézmy, ze chcemy napisaé program, ktéry wyliczy i wyswietli pierwiastek kwadratowy dla kazdej nieujemnej liczby
z listy (lub krotki) podanej przez uzytkownika.

Aby przejs¢ do edycji nowego programu nalezy z menu File wybra¢ polecenie New Window.

Otworzy sie nowe okno, przeznaczone do edycji programu. Wybierzmy z menu File polecenie Save As. Wybieramy
folder Moje dokumenty, nastepnie wpisujemy nazwe pierwiastki.py.

o BN

OLOOO\]O‘\U‘I»&UJN}—‘

Przepiszmy nastepujacy program:

Program, ktéry wyliczy i wyswietli pierwiastek kwadratowy
dla kazdej nieujemnej liczby z listy podanej przez uzytkownika
liczby = input ("Podaj kilka liczb:")
forxinliczby:
if x<0: continue
print "Pierwiastkiem liczby %2i jest %5.3f" ¢ (x,x**0.5)

W celu uruchomienia programu wybieramy z menu Run polecenie Run Module (lub wciskamy klawisz F5). Po chwili
nasz program zostanie uruchomiony. Wyprébujmy:

>>>

Podaj kilka liczb:1,-1,2
Pierwiastkiem liczby 1 jest 1.000
Pierwiastkiem liczby 2 jest 1.414

Nie wszystkie zaplanowane obiegi petli muszg by¢ wykonane za kazdym razem. Do przerywania petli w dowolnym
miejscu stuzy instrukcja break.

Zatézmy, ze chcemy napisac program, ktory znajdzie i wyswietli pozycje na liscie (lub w krotce) podanej przez
uzytkownika pierwszego wystgpienia liczby réwniez podanej przez uzytkownika.

Aby przejs¢ do edycji nowego programu nalezy z menu File wybrac¢ polecenie New Window.

Otworzy sie nowe okno, przeznaczone do edycji programu. Wybierzmy z menu File polecenie Save As. Wybieramy
folder Moje dokumenty, nastepnie wpisujemy nazwe szukaj.py.

Program, ktéry znajdzie i wyswietli pozycje na liscie
pierwszego wystgpienia okreslonej liczby
liczby = input ("Podaj kilka liczb:")
szukana = input ("Podaj liczb¢ do znalezienia:")
forp, x inenumerate (liczby) :
if x != szukana: continue
print "Znaleziono liczb¢ %i na pozycji %i" % (x,p+1)

W celu uruchomienia programu wybieramy z menu Run polecenie Run Module (lub wciskamy klawisz
F5). Po chwili nasz program zostanie uruchomiony. Wyprobujmy:

Podaj kilka liczb:1,2,3,2

Podaj liczbe do znalezienia:2
Znaleziono liczbe 2 na pozycji 2
Znaleziono liczbe 2 na pozycji 4
>>>

Jak wida¢, w tej chwili program wypisuje wszystkie, a nie tylko pierwsza pozycje¢ szukanej liczby.
Dopiszmy zatem na koncu programu jedng lini¢ (pamigtajmy o weieciu!):

break

W celu uruchomienia programu wybieramy z menu Run polecenie Run Module (lub wciskamy klawisz
F5). Po chwili nasz program zostanie uruchomiony. Wyprobujmy:

Podaj kilka liczb:1,2,3,2

Podaj liczbe do znalezienia:2
Znaleziono liczbe 2 na pozycji 2
>>>

Jak wida¢, w tej chwili program wypisuje juz tylko pierwszg pozycje szukanej liczby.
Jezeli jednak podamy liczbe, ktdrej nie ma na liscie, nic nie zobaczymy:

Podaj kilka liczb:1,2
Podaj liczbe do znalezienia:3
>>>

Aby to naprawi¢, postuzymy sie instrukcjg else. Instrukcja ta okresla co ma sie wykonaé na zakoriczenie petli, ale
tylko wtedy, gdy nie przerwano petli instrukcjg break.
Dopiszmy jeszcze dwie linie na koricu programu szukaj.py:

else:
print "Liczby %i nie ma na liscie" % szukana

Wyprdébujmy:

Podaj kilka liczb:1,2

Podaj liczbe do znalezienia:5
Liczby 5 nie ma na liscie

>>>

Podaj kilka liczb:1,3
Podaj liczbe do znalezienia:3
Znaleziono liczbe 3 na pozycji 2

>>>

6.7 Petle o nieznanej liczbie powtorzen

Wiemy juz, jak przerwaé we wiasciwym miejscu zbyt dtugg petle. Czasami jednak musimy uzy¢ w programie petli,
ktorej liczby powtdrzen nie jesteSmy w stanie w zaden sposdb przewidzieé. Przypomnijmy sobie algorytm Euklidesa
na wyliczanie Najwiekszego Wspélnego Dzielnika. Powtarzamy w nim operacje dzielenia, nie jesteSmy jednak w
stanie z géry powiedzie(, ile tych operacji bedzie.

Do tworzenia petli o nieznanej liczbie powtdrzen w Pythonie stuzy instrukcja while.

PrzejdZmy do okna trybu interaktywnego i wpiszmy:

>>> a=[1,2,3,4,5,06]
>>> while a:
a=al[:len(a)-1]

print a
(1, 2, 3, 4, 5]
(1, 2, 3, 4]
(1, 2, 3]
(1, 2]
(1]
[]
>>>

Petla typu while moze réwniez zawierac blok po else, wykonywany po ostatnim obiegu petli:

>>> a=7

>>> while a:
a-=1
print a

else: # wciénij klawisz backspace by cofna¢ wciecie
print "koniec"

N W oo

0
koniec

6.8 Przyklad: wyliczanie Najwiekszego Wspolnego Dzielnika
Sprébujemy teraz napisac program na wyliczanie metodg Euklidesa NWD dwdéch liczb podanych przez uzytkownika.
Aby przejs¢ do edycji nowego programu nalezy z menu File wybra¢ polecenie New Window. Otworzy sie nowe okno,

przeznaczone do edycji programu. Wybierzmy z menu File polecenie Save As. Wybieramy folder Moje dokumenty,
nastepnie wpisujemy nazwe nwd.py.

Wyliczanie NWD i NWW

1. wprowadzanie liczb

print "Podaj dwie liczby naturalne:”
a = input ("Pierwsza:")

b = input ("Druga:")

2. ustalenie ktora jest mniejsza

ifa>bh:
w=a
m=b
else:
w=bh
m=a
3. petla gtéwna
r=w%m
while r:
w=m
m=r
r=w%m

4. wySwietlenie rezultatéw
print "NWD liczb %i i %i wynosi %i, a ich NWW wynosi %i" % (a,b, m, a*b/m)

Wyprdbujmy:

>>> RESTART
>>>

Podaj dwie liczby naturalne:

Pierwsza:6

Druga:8

NWD liczb 6 i 8 wynosi 2, a ich NWW wynosi 24

>>> RESTART
>>>

Podaj dwie liczby naturalne:

Pierwsza:21

Druga:14

NWD liczb 21 i 14 wynosi 7, a ich NWW wynosi 42

>>>

6.9 Przyklad: wyszukiwanie liczb pierwszych

Do wyszukania liczb pierwszych z podanego zakresu postuzymy sie sitem Eratostenesa.

Algorytm ten polega na usuwaniu z badanego zakresu wszystkich wielokrotnosci kolejnych liczb pierwszych.

Aby przejs¢ do edycji nowego programu nalezy z menu File wybrac polecenie New Window. Otworzy sie nowe okno,
przeznaczone do edycji programu. Wybierzmy z menu File polecenie Save As. Wybieramy folder Moje dokumenty,
nastepnie wpisujemy nazwe pierwsze.py.

Wyszukiwanie liczb pierwszych

koniec = input ("Podaj gbérna granice zakresu do wyszukania liczb pierwszych:")
pierwsze = range(koniec+1)
n=1
while (n < koniec):

n+=1

if pierwsze[n]==0: # zerem oznaczamy liczby nie-pierwsze

continue
m=n*2

while m <= koniec:
pierwsze[m]=0 # zerem oznaczamy liczby nie-pierwsze
m+=n
print "Znaleziono nastepujace liczby pierwsze:"
for n in pierwsze([2:]:
if n: print n,

Wyproébujmy:

Podaj gorng granice zakresu do wyszukania liczb pierwszych:99
Znaleziono nastepujace liczby pierwsze:
12357111317192329313741434753596167 717379838997

>>>

6.10 Cwiczenia kontrolne

Woda zamarza przy 32 stopniach Fahrenheita, a wrze przy 212 stopniach Fahrenheita. Napisz program
,Sstopnie.py”, ktory wyswietli tabele przeliczen stopni Celsjusza na stopnie Fahrenheita w zakresie od —20
do +40 stopni Celsjusza (co 5 stopni). Pamietaj o wyswietlaniu znaku plus/minus przy temperaturze.
Napisz program ,,oceny.py”, ktéry wczytuje od uzytkownika kolejne oceny i:

= sprawdza czy wprowadzona ocena jest na liscie dopuszczalnych na wydziale ocen

e jezeli ocena jest na liscie dopuszczalnych na wydziale ocen, dodaje jg na liste
otrzymanych ocen
»= jezeli wcisnieto sam Enter, oznacza to koniec listy otrzymanych ocen
= wyswietla wyliczong dla listy otrzymanych ocen $rednig arytmetyczna.

LEKCJA 7 - OBIEKTY, METODY, MODULYY,

FUNKCJE MATEMATYCZNE
7.1 Podstawy podejscia obiektowego

Wiaczmy tryb interaktywny Pythona.

Python jest jezykiem zorientowanym obiektowo. By w petni korzystac z jego mozliwosci, musimy zatem nauczy¢ sie
podstaw podejscia obiektowego.

Zasadniczg koncepcjg w podejsciu obiektowym do programowania jest potgczenie w catosé danych oraz algorytmoéw,
ktére na tych danych operuja. Takie potgczenie danych i algorytmdéw nazywamy obiektem.

Obiekt posiada pewne wtasnosci, czyli dane oraz pewne metody, czyli algorytmy do przetwarzania tych danych.

W jezyku Python dostep do wtasciwosci i metod okreslonego obiektu uzyskujemy stawiajgc kropke po jego nazwie.
Metody od wtasciwosci odrézniamy po tym, ze jako funkcje muszg miec na koricu nawiasy okragte.

Zbiér obiektéw o tych samych wtasnosciach i metodach nazywamy klasa.

Dla przyktadu stwdrzmy zmienng zespolong z:

>>> z=3427
>>> z
(3+27)

Klasa liczb zespolonych complex posiada dwie wtasciwosci real i imag przechowujgce czesc rzeczywisty i czesc
urojong liczby:

>>> z.real
3.0
>>> z.imag
2.0

Klasa liczb zespolonych complex posiada takze metode conjugate() pozwalajgcag wyliczy¢ liczbe sprzezong do
przechowywane;j:

>>> z.conjugate ()
(3-27)

>>> z*z._.conjugate ()
(13+073)

7.2 Metody operujace na napisach
Wyijatkowo duzo metod posiada klasa string. Metody te stuzg do réznego typu konwersji i formatowania napiséw.
Na poczatek stwérzmy zmienng napisowg s:

>>> s="to jest NAPIS"
>>> s
'to jest NAPIS'

Metoda capitalize() stuzy do nadania napisowi formatu jak w zdaniu, to jest zmiany pierwsze;j litery na duzg, a
pozostatych na mate:

>>> s.capitalize()
'To jest napis'

Metoda center() stuzy do wysrodkowania napisu w polu o podanej dtugosci. Domyslnie pole dopetniane jest
znakiem spacji:

>>> s.center (32)

! to jest NAPIS !

>>> s.center (64)

! to jest NAPIS !

Mozemy jednak podac inny znak wypetnienia (jako drugi parametr metody):

>>> s.center (64, '*")
|*************************to jest NAPIS**************************'

Metoda count() oblicza ile razy okreslony cigg znakdw wystepuje w napisie:

>>> s.count ('t')

2

>>> (s*10) .count (s)
10

Metoda find() odnajduje pierwsze wystgpienie okreslonego cigg znakdéw w napisie:

>>> s.find ('NAPIS')
8

Jezeli szukanego ciggu w napisie nie ma, zwracana jest wartos¢ -1:

>>> s.find('napis"')
-1

Metoda isdigit() sprawdza, czy napis zawiera tylko cyfry:

>>> s.isdigit ()

False

>>> '18'.isdigit ()
True

>>> '18.2'.isdigit ()
False

Metoda join() taczy wszystkie elementy sekwencji podanej jako parametr w pojedynczy napis, wstawiajgc pomiedzy
nie napis dla ktérego wywotujemy metode:

>>> ' ' Join(['ala', 'ma', 'kota'l)

'ala ma kota'

>>> ', ' Join(['ala', 'ma', 'kota'l)

'ala,ma, kota'

>>> s.join (['***']1%*5)

'***to jest NAPIS***to jest NAPIS***to jest NAPIS***to jest NAPIS***!'

Metoda lower() zamienia wszystkie duze litery w napisie na mate:

>>> s.lower ()
'to jest napis'

Metoda replace() zamienia wszystkie wystgpienia okreslonego cigg znakéw w napisie na inny ciagg:

>>> s.replace('NAPIS', '"tekst')
'to jest tekst'

>>> s.replace(' ','---")
'to---jest---NAPIS'

Metoda rfind() odnajduje ostatnie wystgpienie okreslonego cigg znakéw w napisie:

>>> s.rfind ('NAPIS')

8

>>> 'ala ma kota'.rfind('a')
10

Jezeli szukanego ciggu w napisie nie ma, zwracana jest wartosc -1:

>>> s.rfind('napis')
-1

Metoda rjust() stuzy do wyréwnania napisu do prawej w polu o podanej dtugosci. Domysinie pole dopetniane jest
znakiem spacji:

>>> s.rjust (32)
! to jest NAPIS'

>>> s.rjust (64)

! to jest NAPIS'

Mozemy jednak podac inny znak wypetnienia (jako drugi parametr metody):

>>> s.rjust(64,'.")
e e e et e e e ettt e et e ettt e e e e to jest NAPIS'

Metoda split() tworzy liste wyrazéw wystepujacych w napisie:
>>> s.split ()
['to', 'jest', 'NAPIS']

>>> for wyraz in s.split():
print wyraz.capitalize () .rjust (60)

To
Jest
Napis

Jako parametr mozemy podac znak rozdzielajgcy wyrazy (domyslinie spacja):

>>> '032-345-231".split('-")
['032', '345', '231"]

Metoda splitlines() tworzy liste linii wystepujgcych w napisie:
>>> ((s+'\n')*10) .splitlines()

['to jest NAPIS', 'to jest NAPIS', 'to jest NAPIS', 'to jest NAPIS', 'to jest NAPIS',
'to jest NAPIS', 'to jest NAPIS', 'to jest NAPIS', 'to jest NAPIS', 'to jest NAPIS']

Metoda swapcase() odwraca wielkos¢ liter w napisie:

>>> s.swapcase ()
'TO JEST napis'

Metoda title() zmienia wielkos$¢ liter jak w nagtéwku:

>>> s.title()
'To Jest Napis'

Metoda upper() zamienia wszystkie mate litery w napisie na duze:

>>> s.upper ()
'TO JEST NAPIS'

7.3 Metody operujace na listach
Rowniez klasa list posiada duzo metod. Metody te stuzg do réznego typu modyfikacji i porzgdkowania list.
Na poczatek stworzmy liste I:

>>> l=range (1,21)
>>> 1
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Metoda append() dotagcza do listy pojedynczy element:

>>> 1.append(33)

>>> 1
(L, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 33]

Metoda extend() dotgcza do listy inng liste:

>>> l.extend([33,99])

>>> 1

(r, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 33, 33, 99]
>>>

Metoda count(w) liczy ile razy wystepuje na liscie wartos¢é w:

>>> 1l.count (33)
2
>>> 1.count (99)
1
>>> 1l.count (102)
0

Metoda index(w) znajduje pierwszg pozycje listy na ktérej wystepuje wartosé¢ w:

>>> 1.index (33)
20

Mozna ograniczy¢ przeszukiwanie do czesci listy przez podanie dodatkowo dwéch parametréw - poczatku i korica
zakresu:

>>> 1.index(33,21,22)
21

Metoda insert(i, w) wstawia na pozycje i listy wartos¢ w:

>>> 1l.insert (5,77)
>>> 1
(1, 2, 3, 4, 5, 717, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 33, 33, 99]

Metoda pop(i) zwraca wartos¢ z pozycji i listy, po czym usuwa te pozycje:

>>> 1.pop (D)

77

>>> 1

(., 2, 3, 4, 5, ¢, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 33, 33, 99]
>>>

Metoda remove(w) usuwa z listy pierwszg znaleziong na liscie warto$¢ w:

>>> 1.remove (99)

>>> 1

(., 2, 3, 4, 5, ¢, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 33, 33]
>>> 1l.count (33)

2

>>> 1.remove (33)

>>> 1

(1, 2, 3, 4, 5, ¢, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 33]
>>> 1l.count (33)

1

>>> 1.remove (33)

>>> 1

(1, 2, 3, 4, 5, o, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

>>> 1l.count (33)

0

Metoda reverse() odwraca kolejnos¢ elementdw listy:

>>> 1.reverse ()

>>> 1
(20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9,

Metoda sort() porzadkuje elementy listy w kolejnosci rosnace;j:

>>> 1.sort ()
>>> 1
(1, 2, 3, 4, 5, ¢, 7, 8, 9, 10, 11, 12, 13, 14,

7.4 Moduly

15, 16, 17, 18, 19, 20]

Moduty Pythona zawierajg definicje rzadziej uzywanych funkcji i typéw danych.

Dostep do nich uzyskujemy dzieki instrukcji import. Wpiszmy:

>>> import random

Od tej pory mamy dostep do zawartosci modutu random. Modut ten zawiera funkcje obstugujgce generowanie liczb

pseudolosowych:

>>> random. seed ()

Inicjalizuje generator liczb pseudolosowych. Uzycie tej funkcji powinno zawsze poprzedzac losowanie jakiejkolwiek

liczby.

>>> random.randint (1,10)
3
>>> random.randint (1,10)
1
>>> random.randint (1,10)
4

Funkcja randint(od, do) losuje liczbe catkowitg z zakresu od..do.

Zauwazmy, ze nazwe funkcji poprzedzamy nazwa modutu i kropka.

Otrzymamy btad, jezeli napiszemy po prostu:
>>> randint (1,10)

Traceback (most recent call last):
File "<pyshell#11>", line 1, in -toplevel-
randint (1,10)
NameError: name 'randint' is not defined

Mozemy jednak uczyni¢ nazwy funkcji dostepnymi bez potrzeby uzywania nazwy modutu poprzez uzycie instrukcji

from:
>>> from random import randint
Od tej pory mozemy po prostu napisac:

>>> randint (1,10)
6

Ale jezeli napiszemy
>>> choice(s.split())
Traceback (most recent call last):
File "<pyshell#14>", line 1, in -toplevel-

choice(s.split())
NameError: name 'choice' is not defined

Zamiast udostepniac po kolei nazwy poszczegdlnych funkcji, mozna zazgdaé wszystkich nazw (ale uwaga! nie dla
kazdego modutu dziata to prawidtowo):

>>> from random import *
| dalej:

>>> choice(s.split())
ltol

Funkcja choice wybiera losowy element z sekwencji.

>>> choice(s.split())
'jest'

>>> choice(s)

lol

>>> choice (1)

1

Funkcja shuffle wykonuje losowa permutacje sekwencji:

>>> shuffle(l)

>>> 1

(r, 20, 1, 9, 10, 2, 14, 18, 5, 6, 15, 3, 7, 16, 17, 12, 8, 4, 19, 13]
>>> shuffle(l)

>>> 1

rts, 1, 13, 14, o, 8, 4, 10, 18, 16, 12, 3, 11, 17, 19, 7, 5, 6, 20, 2]
>>>

Funkcja random zwraca losowa liczbe rzeczywistg z przedziatu [0.0, 1.0):

>>> random()
0.1964729982262956

Funkcja uniform(a,b) zwraca losowg liczbe rzeczywistg z przedziatu [a, b):

>>> uniform(10,20)
13.952472157445552

Funkcja uniform(a,b) zwraca losowg liczbe rzeczywistg z przedziatu [a, b):

>>> uniform(10,20)
13.952472157445552

Oprdcz jednostajnego, dostepne sg i inne rozktady zmiennych losowych. Np. funkcja normalvariate(mu, sigma)
zwraca warto$¢ zmiennej losowej o rozktadzie normalnym, o Sredniej mu i odchyleniu standardowym sigma:

>>> normalvariate (10,5)
4.6557086378024239

7.5 Funkcje matematyczne

Modut math zawiera definicje najczesciej uzywanych funkcji matematycznych.
>>> from math import *

Funkcje modutu math operujg na liczbach rzeczywistych.
Funkcja math.ceil(x) zwraca sufit liczby rzeczywistej x (najmniejszg liczbe catkowitg nie mniejszg niz x)

>>> ceil (2.7)
3.0

Funkcja math.fabs(x) zwraca wartos¢ absolutng liczby rzeczywistej x

>>> fabs (-3)
3.0

Funkcja math.floor(x) zwraca podtoge liczby rzeczywistej x (najwieksza liczbe catkowitg nie wiekszg niz x)

>>> floor(2.7)
2.0

Funkcja math.modf(x) zwraca krotke zawierajgcg cze$¢ utamkows i catkowitg liczby rzeczywistej x
>>> modf (2.5)
(0.5, 2.0)

>>> modf (2.5) [0]
0.5

Funkcja math.exp(x) zwraca e do potegi x

>>> exp (1)
2.7182818284590451

Funkcja math.log(x) zwraca logarytm naturalny z x

>>> log(e)
1.0

By zmienié podstawe logarytmu podajemy drugi parametr funkcji math.log

>>> log(256,2)
8.0

Funkcja math.sqrt(x) zwraca pierwiastek kwadratowy z x

>>> sqrt(49)
7.0

Funkcja math.acos(x) zwraca w radianach arcus cosinus kata x

>>> acos (1)
0.0

Funkcja math.asin(x) zwraca w radianach arcus sinus kata x

>>> asin (0)
0.0

Funkcja math.atan(x) zwraca w radianach arcus tangens kata x

>>> atan (0)
0.0

Funkcja math.cos(x) zwraca cosinus kata x podanego w radianach

>>> cos (1)
0.0

Funkcja math.sin(x) zwraca sinus kata x podanego w radianach

>>> sin (0)
0.0

Funkcja math.tan(x) zwraca tangens kata x podanego w radianach

>>> tan (0)
0.0

Funkcja math.hypot(x, y) zwraca odlegto$¢ punktu o wspétrzednych (x, y) od poczatku uktadu (0, 0)
(dtugos¢ przeciwprostokatnej dla przyprostokatnych o dtugosciach xi y)

>>> hypot (3,4)
5.0

Funkcja math.degrees(x) zamienia miare kata x wyrazong w radianach na stopnie

>>> degrees (pi)
180.0

Funkcja math.radians(x) zamienia miare kata x wyrazong w stopniach na radiany

>>> radians (180)
3.1415926535897931

Jak mozna byto zauwazy¢ w przyktadach, modut math definuje takze dwie state: pi oraz e.

7.6 Przyklad: pisanie wyrazow wspak

Sprobujemy teraz napisaé program na odwracanie poszczegdlnych wyrazow zdania. Aby przejs¢ do edycji nowego
programu nalezy z menu File wybrac¢ polecenie New Window. Otworzy sie nowe okno, przeznaczone do edycji
programu. Wybierzmy z menu File polecenie Save As. Wybieramy folder Moje dokumenty, nastepnie wpisujemy
nazwe wspak.py.

program wyswietla poszczegdblne wyrazy napisu wspak
t=raw_input ("Wpisz dituzszy tekst >")

for w in t.split(): # dla kazdego wyrazu w zdaniu
1=1ist (w) # tworzymy liste jego liter
l.reverse () # odwracamy jej kolejnosc¢
print ''.join(l), # taczymy ja w catos$é¢ i wyswietlamy bez separatordw
Wyprdbujmy:
>>> RESTART
>>>

Wpisz dtuzszy tekst >dzieckiem w kolebce kto teb urwail hydrze
meikceizd w ecbelok otk bel tawru ezrdyh
>>>

7.7 Przyklad: wyliczanie odleglosci miedzy dwoma punktami na
plaszczyznie

Sprébujemy teraz napisac program do wyliczania odlegtosci miedzy dwoma punktami na ptaszczyznie. Aby przejsc¢ do
edycji nowego programu nalezy z menu File wybraé polecenie New Window. Otworzy sie nowe okno, przeznaczone
do edycji programu. Wybierzmy z menu File polecenie Save As. Wybieramy folder Moje dokumenty, nastepnie
wpisujemy nazwe punkty.py.

program wylicza odlegtos$¢ miedzy dwoma punktami

from math import hypot

plx,ply = input ("Podaj wspdirzedne pozioma i1 pionowa pierwszego punktu >")
p2x,p2y = input ("Podaj wspdbdirzedne pozioma i pionowa drugiego punktu >")
print "Odlegtos¢ miedzy tymi punktami wynosi %.3f" % hypot (plx-p2x,ply-p2y)

Wyprébujmy:

>>> RESTART
>>>

Podaj wspdbirzedne poziomg i pionowa pierwszego punktu >0,1
Podaj wspdbditrzedne poziomg i pionowa drugiego punktu >1,0
Odlegtos¢ miedzy tymi punktami wynosi 1.414
>>> RESTART
>>>

Podaj wspdirzedne pozioma i pionowa pierwszego punktu >-1,-2
Podaj wspdbditrzedne poziomg i pionowa drugiego punktu >3,1

Odlegtos$¢ miedzy tymi punktami wynosi 5.000
>>>

7.8 Cwiczenia kontrolne

l. Napisz program "tryg.py", ktory wczyta od uzytkownika wielkos¢ kata w stopniach i wyswietli wartosé
czterech podstawowych funkcji trygonometrycznych (sin, cos, tg, ctg) o ile dla danego kata jest to

mozliwe.
Il. Napisz program "lotto.py", ktory wyswietli 6 losowych i nie powtarzajacych sie liczb z zakresu od 1 do 49.
Il Napisz program "wyrazy.py", ktéry wczyta od uzytkownika pewien tekst, a nastepnie podzieli go na
zdania (zaktadamy, ze jednoznacznie kropka rozdziela zdania) i dla kazdego zdania wyswietli ile jest w

nim wyrazow (zaktadamy, ze spacja oddziela wyrazy w zdaniu).

LEKCJA 8 - DEFINIOWANIE FUNKCJI W
PYTHONIE

8.1 Definiowanie funkcji

Poznalismy dotad szereg funkcji Pythona, zarowno wbudowanych, jak i dostepnych z poziomu dotaczanych
modulow.
Jak w kazdym jezyku umozliwiajagcym programowanie strukturalne, Python pozwala rowniez tworzy¢
programiscie wiasne funkcje.
Definicja funkcji musi zawierac:
= nagltowek funkcji obejmujacy
o nhazwe funkcji, ktora pozwoli zidentyfikowaé funkcj¢ w pozostalej czeéci programu
o liste argumentow, ktora funkcja otrzymuje na poczatku dziatania programu
= cialo funkcji, zawierajace instrukcje, ktore zostang wykonane w momencie wywotania (uzycia)
funkc;ji

o jezeli funkcja ma zwracac jakis rezultat, musi zawiera¢ odpowiednig instrukcje

W jezyku Python sktadnia definicji funkcji jest nastgpujaca:
def nazwa funkcji (lista_parametréw):
instrukcje_do_wykonania

Przejdzmy do trybu interaktywnego Pythona.
Zdefiniujemy przyktadowsa funkcje pierw, ktora wylicza¢ bedzie pierwiastek kwadratowy liczby
rzeczywistej podanej jako argument.

>>> def pierw(n):
return n**0.5

Jak wida¢ funkcja jest bardzo prosta, a jej cialo sktada si¢ tylko z jednej linii zawierajacej instrukcje return.
Instrukcja return stuzy do przekazywania rezultatu na zewnatrz funkcji. Wyrazenie po niej zostanie
wyliczone, a jego warto$¢ zwrdcona jako rezultat funkcji.

Wyprébujmy dziatanie funkcji:

>>> pierw(2)
1.4142135623730951
>>> pierw (9)

3.0

8.2 Usuwanie i redefiniowanie funkcji

Zdefiniowang uprzednio funkcje mozemy w dowolnym miejscu usunaé, postugujac si¢ instrukcja del. A
zatem:

>>> del pierw

| teraz:

>>> pierw (3)

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
pierw(3)
NameError: name 'pierw' is not defined
>>>

Co oznacza, ze funkcj¢ pierw udato nam si¢ usuna¢ i nie mozemy dalej jej uzywac.
Nie martwmy si¢ jednak tg stratg. Zaraz zdefiniujemy nowa, lepsza funkcje pierw.
Uwzgledni ona, ze pierwiastek kwadratowy mozemy oblicza¢ tylko dla nieujemnych liczb rzeczywistych.

>>> def pierw(n):
if n>=0: return n**0.5

Dla liczb nieujemnych funkcja dziata prawidtowo:

>>> pierw (3)
1.7320508075688772

A dla ujemnych nie powoduje komunikatu o bledzie

>>> pierw (-3)
>>>

Aby zmieni¢ funkcje, nie musimy jej wpierw kasowacé. Wystarczy, ze od nowa ja zdefiniujemy.
Poprawmy naszg funkcje tak, aby wyliczala pierwiastek rowniez dla ujemnych liczb rzeczywistych:

>>> def pierw(n):
if n>=0: return n**0.5
else: return (-n)**0.5%17

Sprawdzmy:

>>> pierw (4)
2.0

>>> pierw (-4)
23

8.3 Parametry formalne i aktualne, zmienne lokalne

Wystepujacy w nagtowku funkcji identyfikator n nazywamy parametrem formalnym. Jest to nazwa, pod
ktorg przekazana do funkcji warto$¢ widziana jest wewnatrz ciata funkcji.
Parametr formalny jest szczegdlnym rodzajem zmiennej lokalnej (szczegdlnym, bo inicjalizowanym
warto$cig podang przy wywotaniu w nawiasach). Zmienna lokalna to kazda zmienna inicjowana w obrebie
funkcji. Zmienna lokalna:

= dostepna jest tylko w obrebie funkcji; a zatem:

>>> pierw (7)
2.6457513110645907
>>> n

Traceback (most recent call last):
File "<pyshell#2>", line 1, in -toplevel-
n
NameError: name 'n' is not defined

= "przykrywa" zmienng o tej samej nazwie istniejacg poza funkcja

>>> n=8§

>>> pierw (7)
2.6457513110645907
>>> n

8

Jak wida¢ modyfikacja zmiennej lokalnej n (na 7), nie zmienia warto$ci zmiennej globalnej n (nadal 8).

Wystepujaca w wywolaniu funkcji warto$¢ 7 to parametr aktualny. Parametry aktualne to faktyczne warto$ci
przekazane do funkcji.

W momencie wywotania funkcji wszystkie operacje przewidziane do wykonania na parametrze formalnym,
wykonywane sg na parametrze aktualnym (czyli w tym przypadku na liczbie 7).

8.4 Wiele argumentow, wiele rezultatow
Funkcja moze przyjmowaé wigcej niz jeden argument i zwraca¢ wigcej niz jeden rezultat.

Ponizej mamy przyktadowa funkcje rs, ktora dla dwoch liczb zwraca ich sume oraz rdznice.

>>> def rs(a,b):
return atb,a-b

Wyprébujmy:

>>> rs(l,3)
(4, -2)

Jak wida¢, rezultat wywotania funkcji, ktora zwraca wigcej niz jedng warto$¢, jest krotka.
Mozemy to wykorzysta¢ w iteracji:

>>> for n in rs(3,4): print n

7
-1

Lub skonwertowa¢ wynik na liste:

>>> list(rs(2,7))
[9, -5]

Jezeli wartosci, ktore maja zosta¢ przekazane jako argumenty funkcji zawarte s w sekwencji, np.:

>>> 1=[2, 3]

nie da si¢ bezposrednio przekazac takiej sekwencji jako listy argumentow (gdyz traktowana jest ona jako
pojedynczy argument):

>>> rs(l)

Traceback (most recent call last):
File "<pyshell#8>", line 1, in -toplevel-
rs(l)
TypeError: rs() takes exactly 2 arguments (1 given)

o ile nie "rozpakujemy" elementow sekwencji przy uzyciu gwiazdki:

>>> rs(*1)
(5, -1)

8.5 Domyslne i nazwane wartosci argumentow
Zdetiniujmy nastepujacag funkcje:

>>> def kto(imie,wiek,jaki):
print imie,"mimo swych",wiek,"lat jest bardzo",jaki+"m cziowiekiem"

Wyprébujmy ja:
>>> kto ("Adam",12, "madry")
Adam mimo swych 12 lat jest bardzo madrym czlowiekiem

>>> kto("0Ola",16,"rozsadny")
Ola mimo swych 16 lat jest bardzo rozsadnym cziowiekiem

Jezeli jednak nie podamy warto$ci dla wszystkich parametréw formalnych, wystapi btad:
>>> kto ("Zdzis")
Traceback (most recent call last):

File "<pyshell#17>", line 1, in -toplevel-
kto ("zdzis")

TypeError: kto() takes exactly 3 arguments (1 given)

Mozemy tego unikna¢, podajac domyslne wartosci argumentéw. Zdefiniujmy funkcje od nowa:

>>> def kto(imie,wiek=18, jaki="oczytany"):
print imie, "mimo swych",wiek,"lat jest bardzo",jaki+"m cziowiekiem"

Teraz wystarczy jednak poda¢ imi¢, by funkcja zadziatata:

>>> kto ("zdzisg")

Zdzi$ mimo swych 18 lat jest bardzo oczytanym cziowiekiem
>>> kto("zdzig", 44)

Zdzi$ mimo swych 44 lat jest bardzo oczytanym czilowiekiem
>>> kto("Zdzis",22,"krnabrny")

Zdzi$ mimo swych 22 lat jest bardzo krnabrnym cziowiekiem

Jedynym parametrem wymaganym pozostaje imi¢, gdyz nie podaliSmy dla niego wartosci domyslne;j:
>>> kto ()

Traceback (most recent call last):
File "<pyshell#23>", line 1, in -toplevel-
kto ()
TypeError: kto() takes at least 1 argument (0 given)

Parametry do funkcji, mozemy przekazywac albo podajac ich warto$ci w kolejnosci podanej w nagtowku
definicji funkcji, albo w dowolnej kolejnosci, wykorzystujac ich nazwy:

>>> kto(imie="Jan",wiek=4,jaki="dostojny")
Jan mimo swych 4 lat jest bardzo dostojnym cziowiekiem
>>> kto(jaki="dostojny",wiek=4,imie="Jan")
Jan mimo swych 4 lat jest bardzo dostojnym cziowiekiem

Jezeli parametry posiadaja warto$ci domys$lne, mozemy przekazywac tylko wybrane z nich:

>>> kto(jaki="dostojny",imie="Jan")
Jan mimo swych 18 lat jest bardzo dostojnym cziowiekiem

Parametry znajdujace si¢ na poczatku listy 1 na wlasciwych sobie pozycjach, nie muszg mie¢ podane;j
nazwy:

>>> kto("Jan", jaki="dostojny")
Jan mimo swych 18 lat jest bardzo dostojnym czlowiekiem

Parametry znajdujace si¢ po parametrach wymienionych z nazwy, nawet na wtasciwych sobie pozycjach,
muszg mie¢ podang nazwe:

>>> kto(imie="Jan",4,"dostojny")
SyntaxError: non-keyword arg after keyword arg

8.6 Funkcje z nieznang liczbg parametrow

Jezeli w momencie definiowania funkcji nie jesteSmy w stanie okresli¢ liczby argumentow, ktére beda do
niej przekazywane, poprzedzamy nazwe parametru formalnego oznaczajacego wszystkie pozostale
argumenty funkcji gwiazdka:

>>> def suma (*arqg):
s=0
for x in arg:
s+=x
return s

Teraz funkcja zadziata dla dowolnej liczby argumentow:

>>> suma ()

0

>>> suma (1)

1

>>> suma (1, 2)

3

>>> suma (1,2, 3)

6

>>> suma (*range (10))
45

8.7 Funkcje rekurencyjne

Funkcje rekurencyjne to funkcje, ktore odwotuja si¢ do samych siebie. Dobrym przyktadem funkcji
rekurencyjnej jest silnia:

>>> def silnia(n):
if n>1:
return n*silnia(n-1)
else:
return 1

>>> silnia(1l)
1

>>> silnia(2)
2

>>> silnia (5)
120

Wykorzystujemy tu fakt, ze n!=(n-1)!1*n.
Kazda funkcja oparta na iteracji, moze zosta¢ przedstawiona w postaci rekurencyjnej. Np. suma:

>>> def suma(*n):

if n:
return n[0]+suma(*list(n) [1:]) # konwersja na liste, gdyz krotka nie
moze by¢ przycieta
else:

return 0

>>> suma (1)

1

>>> suma (1,2, 3)

6

>>> suma (*range (100))
4950

Nie zawsze jednak funkcja w postaci rekurencyjnej jest jednak uzyteczna. Przyktadem nieefektywnosci
rekursji jest funkcja wyliczajaca n-ty element ciggu Fibonacciego (0,1,1,2,3,5,8,13,21,...).

>>> def fib(n):
if n<2:
return n
else:
return fib(n-1)+fib(n-2)

Wyprébujmy:

>>> fib (1)
1

>>> fib (3)
2

>>> fib (8)
21

>>> fib (20)
6765

Na razie dziata dobrze. Sprobujmy wigkszej liczby n:

>>> fib (50)

Czekamy, czekamy, a wyniku jak nie bylo, tak nie ma. Najsensowniej b¢dzie przerwa¢ dzialanie funkcji
weciskajac kombinacje klawiszy CTRL+C.

Dlaczego funkcja liczy tak powoli? Kazde wywotanie funkcji powoduje jej ponowne dwukrotne wywotanie
dla n>=2. A zatem, dla n=50, liczba wywotan funkcji wyniesie okoto 2% razy. Nawet jesli pojedyncze
wywolanie funkecji zabiera tylko jedna dziesieciomilionowa sekundy, to wykonanie 2*° wywotan zajmie
komputerowi prawie dwa lata.

Te samg funkcj¢ da si¢ przedstawi¢ w szybkiej wersji iteracyjnej:

>>> def fib(n) :

if n<2:

return n
a, b=20,1 # 0 podstawiamy pod a, 1 pod b
for x in range(l, n): # potrzebujemy n-1 iteracji

a, b =D>b, atb # b podstawiamy pod a, sume pod b

return b
Sprawdzmy:

>>> fib (0)

0

>>> fib (3)

2

>>> fib (8)
21

>>> fib (20)
6765

>>> fib (50)
12586269025L

8.8 Przyklad: losowanie tekstu
Sprobujemy teraz napisac funkcje, ktéra wygeneruje losowe zdanie zawierajace podang liczbe (domyslnie 5)
losowo wygenerowanych wyrazow.

>>> def brednie (wyrazy=5) :
funkcja generuje losowe zdanie o zadane] liczbie wyrazdw
from random import seed,randint

seed ()
tekst=""
for wyraz in range(wyrazy):
for litera in range (randint(1,10)): # miedzy 1 a 10 liter w
wyrazie
tekst+=chr (randint (ord('a'),ord('z"))) # litery od a do z
tekst+=" "
return (tekst[:-1]1+".").capitalize() # z duzej litery, a na koncu
kropka
Wyprébujmy:

>>> brednie()

'Phehwbbxjb gfhcgj uygnlabrog maicfvg xwi.'
>>> brednie()

'Wjzxo xgqvgimdsh mvbr gwd lorcf.'

>>> brednie(1)

‘Hhmgicsgnv.'

>>> brednie(4)

'Kxz adlokyjetg bwj wyranlsbrn.'

>>> brednie(9)

'Drdoy nekg Isngdfysh cqgj gahuvjdqdk ijxjoxqtr khdjewr cbssjwo ftkdgeyal.'

8.9 Przyklad: wyliczanie odleglosci miegdzy dwoma punktami na
plaszczyznie

Sprobujemy teraz napisa¢ program do wyliczania odleglo$ci migdzy dwoma punktami na ptaszczyznie. Aby
przejs¢ do edycji nowego programu nalezy z menu File wybra¢ polecenie New Window. Otworzy si¢ nowe
okno, przeznaczone do edycji programu. Wybierzmy z menu File polecenie Save As. Wybieramy folder
Moje dokumenty, nastgpnie wpisujemy nazwe punkty.py.

program wylicza odleglo$¢ miedzy dwoma punktami

from math import hypot

pix,ply = input ("Podaj wspdirzedne pozioma 1 pionowa pierwszego punktu >")
p2X,p2y = input ("Podaj wspdlrzedne pozioma i pionowa drugiego punktu >")
print "Odlegtos¢ miedzy tymi punktami wynosi %.3£" % hypot(plx-p2x,ply-p2y)

Wyprébujmy:

>>> RESTART
>>>

Podaj wspotrzedne pozioma i pionowa pierwszego punktu >0,1
Podaj wspotrzgdne pozioma i pionowa drugiego punktu >1,0
Odleglo$¢ migdzy tymi punktami wynosi 1.414

>>> RESTART
>>>

Podaj wspotrzgdne pozioma i pionowa pierwszego punktu >-1,-2
Podaj wspotrzgdne pozioma i pionowa drugiego punktu >3,1
Odlegtos$¢ miedzy tymi punktami wynosi 5.000

>>>

8.10 Cwiczenia kontrolne
. Zdefiniuj funkcje "geo", ktora dla podanych trzech parametrow: n=numer elementu ciagu,
al=wartos¢ pierwszego elementu ciggu (domyslnie 1), g=wartos$¢ iloczynu ciggu
geometrycznego (domyslnie 2) zwrdci n-ty element ciggu geometrycznego.
1. Zdetiniuj funkcje "avg", ktora dla dowolnej liczby parametrow zwroci ich $rednig arytmetyczng
(lub 0 dla 0 parametrow).

LEKCJA 9 - SLOWNIKI

W trzech oméwionych dotad typach sekwencji — listach, krotkach i napisach — dostep do dowolnego elementu
mozliwy byt poprzez podanie jego indeksu. Odmiennego rodzaju typem ztozonym jest stownik (ang. dictionary). W
stowniku dostep do dowolnej wartosci przechowywanej w stowniku mozliwy jest poprzez podanie klucza do niej.
Stownik sktada sie zatem ze zbioru kluczy i zbioru wartosci, gdzie kazdemu kluczowi przypisana jest pojedyncza
wartos$é. Zaleznos¢ miedzy kluczem a jego wartoscig nazywana bywa odwzorowaniem. Klucz nie musi by¢ liczbg, tak
jak jest nig indeks, wystarczy, ze jest typu niezmiennego. Mozna powiedzie¢ wiec, ze o ile lista czy krotka
odwzorowuje liczby catkowite (indeksy) na obiekty dowolnego typu, o tyle stownik odwzorowuje obiekty dowolnego
typu niezmiennego na obiekty dowolnego typu.

W jezyku Python do tworzenia stownikdéw uzywamy nawiaséw klamrowych, np.:

>>> tel = {"policja":997, "straz":998, "pogotowie":999}
>>> tel
{'policja': 997, 'pogotowie': 999, 'straz': 998}

Klucze nie muszg by¢ tekstem, a wartosci liczbami:

>>> bohater={"hans":"kloss","james":"bond"}
>>> ujemne={7:-7,3:-3}

Specyficzny stownik zwraca funkcja vars(). Zawiera on wszystkie dostepne aktualnie zmienne:

>>> vars ()

{'tel': {'policja': 997, 'pogotowie': 999, 'straz': 998}, 'bohater': {'hans': 'kloss',
'james': 'bond'}, ' builtins_': <module ' builtin ' (built-in)>, 'ujemne': {3: -3,
7: -7}, ' name_ ': ' main ', ' doc__ ': None}

Aby ustali¢ ilo$¢ kluczy pamietanych w stowniku uzywamy funkcji 1en:

>>> len(tel)
3

Aby otrzymac wartos¢ podanego klucza uzywamy nawiaséw kwadratowych:

>>> tel ["policja"]
997

>>> bohater["hans"]
'kloss'

>>> ujemne [7]

-7

Zwréémy uwage, ze ujemne [7] nie oznacza siddmego elementu stownika, lecz taki element stownika, ktérego klucz
stanowi liczba 7.

Aby dopisa¢ nowy klucz:

>>> tel["taxi"]=919

>>> tel

{'"taxi': 919, 'policja': 997, 'pogotowie': 999, 'straz': 998}
Aby zmodyfikowac istniejgcg wartosc:

>>> tel["taxi"]1=9622

>>> tel["taxi"]
9622

Zapis

>>> tel2=tel

nie skopiuje zawartosci tel do tel2 ale jedynie stworzy drugie odwotanie do tych wartosci. A zatem operacja

>>> tel2["taxi"]1=9666
zmieni zaréwno wartosci tel jaki tel2, gdyz sg to te same dane pod dwoma réznymi nazwami:

>>> tel
{'taxi': 9666, 'policja': 997, 'pogotowie': 999, 'straz': 998}

Aby skopiowaé zawartos¢ jednego stownika do drugiego uzywamy metody copy:
>>> tel2=tel.copy()
W ten sposdb otrzymalismy dwa rézne stowniki, poczatkowo o tych samych wartosciach.

>>> tel["taxi"]=9622

>>> tel

{'"taxi': 9622, 'policja': 997, 'pogotowie': 999, 'straz': 998}
>>> tel2

{'"taxi': 9666, 'policja': 997, 'pogotowie': 999, 'straz': 998}

Aby usungc¢ wartos$¢ ze stownika uzywamy instrukcji de1:

>>> del tel['taxi']
>>> tel
{'policja': 997, 'pogotowie': 999, 'straz': 998}

Aby wyczysci¢ caty stownik uzywamy metody clear:

>>> tel.clear ()
>>> tel

{}
Aby zaktualizowa¢ stownik w oparciu o inny stownik uzywamy metody update:

>>> tel.update (tel2)
>>> tel
{'taxi': 9666, 'policja': 997, 'pogotowie': 999, 'straz': 998}

Aby odczytac i od razu usungc okreslong wartos¢ ze stownika uzywamy metody pop:

>>> tel.pop('taxi')

9666

>>> tel

{'policja': 997, 'pogotowie': 999, 'straz': 998}

Aby odczytad i od razu usunac nieokreslong wartosc ze stownika uzywamy metody popitem:

>>> tel.popitem()

('policja', 997)

>>> tel

{'pogotowie': 999, 'straz': 998}

Aby sprawdzi¢ zawartos¢ okreslonego klucza w stowniku uzywamy operatora in:
>>> 'taxi' in tel

False

>>> 'taxi' in tel2

True

Mozna tez uzyé w tym celu metody has key:

>>> tel2.has key ("pogotowie")
True

Aby uzyskac liste kluczy wystepujacych w stowniku, uzywamy metody keys:

>>> tel.keys()
['pogotowie', 'straz']

Aby uzyskac liste wartosci wystepujacych w stowniku, uzywamy metody values:

>>> tel.values /()
[999, 998]

Mozna w ten sposdb sprawdzi¢ wystepowanie okreslonych wartosci:

>>> 999 in tel.values()
True

Aby skonwertowac stownik na napis:

>>> str(tel?)
"{'taxi': 9666, 'policja': 997, 'pogotowie': 999, 'straz': 998}"

Aby usungc caty stownik:

>>> del tel
>>> tel

Traceback (most recent call last):
File "<pyshell#35>", line 1, in -toplevel-
tel
NameError: name 'tel' is not defined

Przyktad 1. Napisz program , liczby_slownie.py”, ktéry zamieni podang przez uzytkownika zapisang stownie wartos¢
(z zakresu od 1 do 59) na odpowiadajacg jej liczbe dziesietna.

Plan programu. Stowny zapis wartosci sktada sie z sekwencji stow (np. trzydziesci trzy), z ktérych kazdemu przypisana
jest pewna warto$é. Wartos¢ odpowiadajgcg catemu zapisowi otrzymuje sie ze zsumowania wartosci poszczegdlnych
stéw (np. trzydziesci (30) trzy (3) = 30 +3 = 33). Program powinien zatem rozbi¢ wprowadzony przez uzytkownika
napis (raw_input) na wyrazy sktadowe (split), dla kazdego wyrazu (for x in 1) oznaczajgcego wartosé (if x
in w) ustali¢ odpowiadajgcg mu wartos$¢ (w[x]), a nastepnie dodac je do siebie (s+=w[x]).

Kod Zrédtowy:

def przelicz (n=""):

w={"jeden":1, "dwa":2, "trzy":3, "cztery":4, "piedé":5, "szes$c":6,
"siedem":7, "osiem":8, "dziewiec¢":9, "dziesieé¢":10, "jedenascie":11,
"dwanascie":12, "trzynascie":13, "czternascie":14, "pietnascie":15,
"szesnascie":16, "siedemnascie":17, "osiemnascie":18,
"dziewietnascie":19, "dwadzies$cia":20, "trzydziesci":30,
"czterdzies$ci":40, "piecdziesiat":50}

l=n.split ()

s=0

for x in 1:
if x in w:

s+=w[x]
return s

t=raw_input ("Wpisz liczbe od 1 do 59>")
print "Wartos¢:", przelicz(t)

Przyktady dziatania:

>>> RESTART ==============================
>>>

Wpisz liczbe od 1 do >czterdzies$ci trzy
Wartosé: 43

>>> RESTART

>>>

Wpisz liczbe od 1 do 59>dwadzies$cia siedem
Wartosé: 27

>>> RESTART
>>>

Wpisz liczbe od 1 do 59>bla bla dwa

Wartosé: 2

Przyktad 2. Napisz program ,liczby rzymskie.py”, ktéry zamieni catkowitg liczbe dziesietng na odpowiadajaca jej
liczbe rzymska.

Plan programu. Liczby rzymskie sktadajg sie z ciggu liter, z ktérych kazda oznacza pewng wartos¢ (np. M — 1000, D —
500, C—-100, L —50), a ktére dodane do siebie dadzg wartosc reprezentowanej liczby. Liczbe zapisuje sie mozliwie
najkrécej, czyli uzywa sie liter o maksymalnej mozliwej wartosci. Litery oznaczajgce wieksze wartosci umieszcza sie
przed tymi oznaczajgcymi mniejsze (czyli ML oznacza 1050), sg jednak od tej reguty wyjatki, np. 900 zapisuje sie jako
CM, a nie DCCCC.

Gdy chcemy zamieni¢ catkowitg liczbe dziesietng na odpowiadajaca jej liczbe rzymska musimy najpierw ustali¢
pierwsza litere liczby rzymskiej. Bedzie nig najwieksza wartosé, ktora jest nie mniejsza od konwertowanej liczby.
Kiedy te wartos¢ ustalimy, zapamietujemy odpowiadajaca jej litere, a samg wartos¢ odejmujemy od konwertowane;j
liczby. Kiedy skonwertujemy ostatnig jedynke (1), oznaczaé to bedzie, ze liczba zostata w catosci skonwertowana —
mozna wiec wyswietli¢ wynik.

Do zapamietania wszystkich znanych wartosci liter w liczbach rzymskich wykorzystamy stownik (rzym). Jego kluczami
beda wartosci liter, a wartosciami odpowiadajgce im litery. Stownik obejmowat bedzie réwniez wszystkie wyjatki.
Program zacznie dziatanie od wczytania liczby do skonwertowania (x). Nastepnie stworzymy liste wartosci liter (r)
uporzadkowang malejgco poprzez wydobycie listy kluczy ze stownika (rzym.keys), rosnace jej posortowanie
(r.sort), a wreszcie odwrdcenie kolejnosci (r. reverse). Cigg zawierajgcy wynik konwersji (1r) inicjalizujemy jako
pusty.

Nastepnie, dla kazdej wartosci i z listy r, tak dtugo jak jest ona wieksza lub rowna pozostatej do konwersji liczbie x,
odpowiadajaca jej sekwencje liter (rzym[i]) dotgczamy do ciggu wynikowego (1r), a samg wartos$¢ odejmujemy (x
-= 1) od liczby pozostatej do konwersji.

Po zakonczeniu powyzszej petli, wyswietlamy rezultat konwersji (print 1r).

Kod Zrédtowy:

rzym = { 1000:"M", 900:"CM", 500:"D", 400:"CD", 100:"C", 90:"XC", 50:"L",
40:"XL", 10:"X", 9:"IX", 5:"V", 4:"IV"’ 1.m" }

x = input ("Podaj liczbe catkowitag:")
print "Liczba", 'x',"w notacji rzymskiej to:",
r = rzym.keys()
r.sort ()
r.reverse ()
lr = ""
for 1 in r:
while 1 <= x:
lr += rzym[i]
x -= i
print 1lr

Przyktad uruchomienia (F5):

>>> RESTART
>>>

Podaj liczbe catkowita:13

Liczba 13 w notacji rzymskiej to: XIII

>>> RESTART
>>>

Podaj liczbe catkowita:1097

Liczba 1097 w notacji rzymskiej to: MXCVII

Cwiczenia kontrolne

Cwiczenie I. Napisz program , liczby_slownie2.py”, ktéry dla wprowadzonej liczby dziesietnej (z zakresu 1-1999)
wyswietli jej warto$¢é zapisang stownie.

Cwiczenie Il. Napisz program ,liczby_rzymskie2.py”, ktéry przeliczy wprowadzona liczbe rzymska na jej postaé
dziesietna.

LEKCJA 10 — ZBIORY I REKORDY
Zbiory

Przejdzmy do trybu interaktywnego Pythona.
W Pythonie mozemy tworzy¢ tak zbiory zmienne:

>>> A=set([1,2,3])
>>> A
set([1, 2, 3])

jak i niezmienne:

>>> B=frozenset([2,3,4])
>>>B
frozenset([2, 3, 4])

Aby stworzyé zbidér pusty napiszemy:

>>> C=set()
>>>C

set([])
Zbiory zmienne moga by¢é powiekszane i zmniejszane:

>>> A.discard(2)
>>> A

set([1, 3])

>>> A.add(5)
>>> A

set([1, 3, 5])

Zbiory niezmienne nie mogg by¢ ani zmniejszane:
>>> B.discard(2)
Traceback (most recent call last):

File "<pyshell#11>", line 1, in -toplevel-

B.discard(2)
AttributeError: 'frozenset' object has no attribute 'discard’

ani powiekszane:
>>> B.add(7)
Traceback (most recent call last):
File "<pyshell#12>", line 1, in -toplevel-
B.add(7)

AttributeError: 'frozenset' object has no attribute 'add'
>>>

Zbiory niezmienne mogg by¢ kluczami w stownikach:
>>> d={B:7}
>>>d

{frozenset([2, 3, 4]): 7}

i elementami innych zbioréw:

>>> C.add(B)
>>>C
set([frozenset([2, 3, 4])])

Zbiory zmienne nie mogg by¢ ani kluczami w stownikach:
>>> d={A:7}

Traceback (most recent call last):
File "<pyshell#18>", line 1, in -toplevel-
d={A:7}
TypeError: set objects are unhashable

ani elementami innych zbioréow:

>>> C.add(A)

Traceback (most recent call last):
File "<pyshell#17>", line 1, in -toplevel-
C.add(A)
TypeError: set objects are unhashable

Operacje na zbiorach

Aby ustali¢ liczbe elementdéw zbioru piszemy:

>>> len(A)
3
>>> len(B)
3
>>> len(C)
1

Aby sprawdzié, czy dany obiekt jest elementem zbioru, piszemy:

>>>2in A
False
>>>2in B
True
>>>5in A
True
>>>5in B
False

Aby sprawdzié, czy dany obiekt nie jest elementem zbioru, piszemy:

>>>3 notin A
False
>>>3 notinB
False
>>>7 notin A
True
>>>7 notin B
True

Aby sprawdzi¢ czy dany zbidr jest podzbiorem innego piszemy:

>>> set([1,3])<=A
True
>>> set([3,4])<=B
True

>>> set([5])<=A
True

>>> set([1,3,5])<=A
True

Lub:

>>> A.issubset(B)
False

Aby sprawdzi¢ czy dany zbidr jest nadzbiorem innego piszemy:

>>> A>=set([1,3])
True
>>> B>=set([3,4])
True

Lub:

>>> Alissuperset(B)
False

Aby potaczy¢ dwa zbiory piszemy:

>>>D=A | B
>>>D
set([1, 2, 3, 4, 5])

Aby okresli¢ czes¢ wspdlng dwdch zbioréw piszemy:

>>>E=A&B
>>>E
set([3])

Aby okresli¢ réznice dwdch zbioréw piszemy:

>>> A-B

set([1, 5])

>>> B-A
frozenset([2, 4])

(Typ zbioru wynikowego jest typem pierwszego ze zbioréw.)
Aby okresli¢ réznice symetryczng dwdch zbiorow piszemy:

>>> F=A"B
>>> F
set([1, 2, 4, 5])

Przyklad programu wykorzystujacego zbiory
Wykorzystujgc zbiory rozwigzemy teraz ¢wiczenie Il z lekcji 7:
»,Napisz program , lotto.py”, ktéry wyswietli 6 losowych i nie powtarzajgcych sie liczb z zakresu od 1 do 49.”

Aby przejs¢ do edycji nowego programu nalezy z menu File wybrac polecenie New Window. Otworzy sie nowe okno,
przeznaczone do edycji programu. Wybierzmy z menu File polecenie Save As. Wybieramy folder Moje dokumenty,
nastepnie wpisujemy nazwe lotto.py.

program losuje 6 liczb od 1 do 49
from random import choice

Wylosowane = set()
while len(Wylosowane) < 6:
Wylosowane.add(choice(range(1,50)))
for x in Wylosowane:
print x,

Wyprobujmy (F5):

>>> RESTART ==
>>>
1368222429

Rekordy

Aby uzywad rekordéw, musimy wpierw zdefiniowac ich klase.
W Pythonie lista pdl w rekordzie moze ulec zmianie w trakcie dziatania programu.
Dlatego mozemy zdefiniowa¢ klase jako pusta:

>>> class Adres:
pass

A nastepnie utworzy¢ rekord w tej klasie:
>>> a=Adres()
| dowolnie go rozszerzac:

>>> a.ulica="Matejki"
>>> a.numer="14a/2"
>>> a.kod="71-128"

>>> a.miasto="Szczecin"

Aby poznac zawarto$é poszczegoélnych pdl rekordu piszemy:

>>> a.ulica
'Matejki'
>>> a.numer
'14a/2'
>>>a.kod
'71-128'

>>> a.miasto
'Szczecin'

Oczywiscie, odpowiednie pola muszg istniec:
>>> a.panstwo
Traceback (most recent call last):
File "<pyshell#148>", line 1, in -toplevel-
a.panstwo
AttributeError: Adres instance has no attribute '‘panstwo’

Aby poznac zawartosé wszystkich pdl rekordu piszemy:

>>>a. dict__
{'numer': '14a/2', 'miasto': 'Szczecin', 'ulica": 'Matejki', 'kod': '71-128'}

Mozemy takze okresli¢ liste pdl juz w momencie definiowania klasy, podajac ich domysine wartosci:

>>> class Osoba:
imie="Jan"

nazwisko="Kowalski"
Aby stworzyc¢ klase opartg o inne klasy, podajemy je jako parametry:

>>> class Pracownik(Osoba, Adres):
pensja=1000.00

Otrzymana klasa Pracownik bedzie miata wszystkie pola klas Osoba i Adres, a dodatkowo pole pensja. Sprawdzmy:

>>> p=Pracownik()

>>> p2=Pracownik()
>>> p2.imie="Adam"
>>> p2.ulica="Torfowa"
>>> p2.pensja=700

>>> p.imie

'Jan'

>>>p.ulica

Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
p.ulica
AttributeError: Pracownik instance has no attribute 'ulica’

>>> p.pensja
1000.0
>>>p2.imie
'‘Adam’
>>>p2.ulica
"Torfowa'

>>> p2.pensja
700

Trzeba przy tym pamietac, ze _ dict__ zwraca stownik tylko tych pdl, ktérych wartosci réznig sie od domysinych:

>>>p2. dict__

{'imie': 'Adam’, 'pensja': 700, 'ulica': 'Torfowa'}
>>>p._ dict__

{}

Przyklad — lista ocen studentow

Sprébujemy teraz napisac program, ktdry postuzy do przechowania listy ocen studentéw z egzaminu.

Aby przejs¢ do edycji nowego programu nalezy z menu File wybrac polecenie New Window. Otworzy sie nowe okno,
przeznaczone do edycji programu. Wybierzmy z menu File polecenie Save As. Wybieramy folder Moje dokumenty,
nastepnie wpisujemy nazwe studenci.py.

Lista Ocen Studentéw
class Student:
imie=""
nazwisko=
ocena=0.0

studenci =]
nr=0
while True:
naz=raw_input('Podaj nazwisko studenta nr %i (ENTER=koniec): ' % (nr+1))
if not naz: break
studenci.append(Student())
studenci[nr].nazwisko = naz
studenci[nr].imie = raw_input('Podaj imie studenta nr %i >"'% (nr+1))
studenci[nr].ocena = float(raw_input('Podaj ocene studenta nr %i > ' % (nr+1)))
nr+=1

print
print "%-4s %-14s %-10s %7s" % ("L.p.","Nazwisko","Imie","Ocena")
for s in studenci:
print "%3i. %-14s %-10s %7.1f" % (studenci.index(s)+1,s.nazwisko, s.imie, s.ocena)

Wyprdébujmy (F5):

>>> RESTART ==
>>>

Podaj nazwisko studenta nr 1 (ENTER=koniec): Adamczak
Podaj imie studenta nr 1 > Piotr

Podaj ocene studenta nr1>3.5

Podaj nazwisko studenta nr 2 (ENTER=koniec): Gierek
Podaj imie studenta nr 2 > Franz

Podaj ocene studentanr2 > 2.0

Podaj nazwisko studenta nr 3 (ENTER=koniec): Hubert
Podaj imie studenta nr 3 > Anna

Podaj ocene studenta nr3 >4.5

Podaj nazwisko studenta nr 4 (ENTER=koniec):

L.p. Nazwisko Imie Ocena
1. Adamczak Piotr 3.5
2. Gierek Franz 2.0
3. Hubert Anna 4.5

Cwiczenia kontrolne
l. Zmien program , lotto” w taki sposéb, by wyswietlat wylosowane liczby od najmniejszej do najwiekszej.

Il. Zmien program, lista studentow” w taki sposdb, by dodatkowo obliczat $Srednig ocen wszystkich
studentéw

LEKCJA 11 - PRZETWARZANIE LIST

Programy bardzo czgsto przetwarzaja sekwencje danych. Jakkolwiek szczegoty tego przetwarzania bywaja
rozmaite, istnieje kilka podstawowych typoéw operacji wykonywanych na sekwencjach danych. Zostang one
przedstawione ponizej, wraz z informacja, jak wygodnie zrealizowa¢ je w jezyku Python.

Zaczniemy od szybkiego generowania list. Wiemy juz, jak tworzy¢ listy zawierajace wiele takich samych
elementow:

>>> |=[0]*20
>>> |
[0,0,0,00000000000000,0,00]

lub powtarzajacy si¢ uktad:

>>>|=[3,5,2]*6
>>> |
[3,5,2,3,52,3,5,2,3,5,2,3,5,2,3,5,2]

oraz jak tworzy¢ listy, ktorych elementy naleza do ciggu arytmetycznego:

>>> |=range(1,21,2)
>>> |
[1,3,5,7,9, 11,13, 15,17, 19]

Poznamy teraz wygodne narzedzie do szybkiego tworzenia list o nawet bardzo ztozonej zawartosci, w
oparciu o inng list¢. Tym narzedziem sg wytworniki list (ang. list comprehensions). Wytworniki dostepne sg
W pigciu postaciach:

e prostej,

e prostej warunkowej,

e I0ZSZerzonej,

e rozszerzonej z jednym warunkiem,

e rozszerzonej z wieloma warunkami.
Posta¢ prosta wytwornika ma nastepujaca sktadnig:
[wyrazenie for zmienna in sekwencja] i daje w wyniku list¢, zawierajacag wartosci wyrazenia obliczone dla
elementéw sekwencji wejsciowej. Przyktady:

e Podwojenie wartos$ci:

>>> [2*x for x in 1]
[2, 6, 10, 14, 18, 22, 26, 30, 34, 38]

e Stworzenie par (X, kwadrat X):

>>> [(x, x*x) for x in range(1,5)]
[(1,1). (2, 4), (3,9), (4 16)]

e Tabela kodowa ASCII:

>>> [(x, ord(x)) for x in "ABCDEF"]
[(A', 65), (B', 66), ('C", 67), (D", 68), (E', 69), (F, 70)]

e Lista zawierajaca 10 pustych list:

>>> [[] for x in range(10)]
(0. 00000000, 00

Posta¢ prosta warunkowa pozwala umieszczaé na liscie tylko takie elementy, ktére spetniajg pewien
warunek (operacj¢ usuwania z listy elementéw niespeiniajacych okreslonego warunku nazywamy

filtrowaniem danych). Ma nastgpujaca sktadnie:
[wyrazenie for zmienna in sekwencja if warunek]

Przyktady:
e Tylko liczby wigksze od 10:

>>> [x for xin | if x>10]
[11, 13, 15, 17, 19]

e Tylko liczby podzielne przez 3 lub 5:

>>> [x for x in range(1,20) if not (x%3) or not (x%5)]
[3,5,6,9, 10, 12, 15, 18]

e Tabela kodowa ASCII tylko dla samogtosek:

>>> [(x, ord(x)) for x in "TABCDEF" if x in "AEIOUY"]
[CA', 65), (E', 69)]

Postaé rozszerzona pozwala tworzy¢ nowa liste w oparciu o wigcej niz jedng istniejacg liste; ma nastepujaca
sktadnig:
[wyrazenie for zmiennal in sekwencjal
for zmienna2 in sekwencja2
e]
Przyktady:
e Pary kazdy element z kazdym:

>>> [(x,y) for x in range(1,5)
for y in range(4,0,-1)]
[(1,4),(1,3),(1,2),(1,1),(2,4),(23),(22),(2,1),3,4),33),(3,2), (3 1), (4 4),(43), (4 2), (4 1)]

e Roznica migdzy warto$cig z pierwszej i drugiej listy:

>>> [x-y for x in range(1,5)
fory in range(4,0,-1)]
[-3,-2,-1,0,-2,-1,0,1,-1,0,1,2,0,1, 2, 3]

e Sklejenie napisu z warto$ci pochodzacych z trzech list:

>>> ['x'+y+'z for x in [1,2]

foryin['A''B]

forzin[0,3]]

[1A0Y, '1A3, '1B0', '1B3', '2A0', '2A3', '2B0', '2B3]

Postaé rozszerzona z jednym warunkiem pozwala na okreslenie pojedynczego warunku, ktory musza
spetnia¢ dane kwalifikujace si¢ na listg¢ wynikowa. Jej sktadnia jest nastgpujaca:

[wyrazenie for zmiennal in sekwencjal

for zmienna2 in sekwencja2

if warunek]
Przyktady:
e Pary kazdy element z kazdym, tylko jezeli pierwszy element jest mniejszy od drugiego:

>>> [(x,y) for x in range(1,5)

for y in range (6,3,-1)

if x<y]

[(1,6). (1,5), (1,4), (2,6), (2, 5), (2, 4), (3, 6), (3,5), (3, 4), (4,6), (4,5)]

e Pary kazdy element z kazdym, tylko jezeli suma elementéw jest mniejsza od 7:

>>> [(x,y) for x in range(1,5)
fory in range (6,3,-1)

if x+y<7]

[(1,5), (1, 4), (2, 4)]

e Pary kazdy element z kazdym, pod warunkiem, ze pierwszy element jest parzysty, lub drugi
jest nieparzysty:

>>> [(x,y) for x in range(1,5)

fory in range (6,2,-1)

if not (x%2) or y%2]

[(1,5), (1,3),(2,6),(2,5), (2, 4), (2, 3), (3, 5), (3,3), (4,6), (4,5), (4,4), (4,3)]

Postac¢ rozszerzona z wieloma warunkami pozwala na okreslenie warunkow, ktore muszg speinia¢ dane
pobierane z poszczegolnych list zrodtowych. Jej sktadnia jest nastepujaca:

[wyrazenie

for zmiennal in sekwencjal if warunekl

for zmienna2 in sekwencja2 if warunek?2

e]
Przyktad:

e Pary kazdy element z kazdym, pod warunkiem, ze pierwszy element jest parzysty a drugi jest
nieparzysty (z pierwszej listy bierzemy tylko elementy parzyste, a z drugiej — nieparzyste):

>>> [(x,y) for x in range(1,5) if not (x%2)
fory in range (6,2,-1) if y%2]
[(2,5), (2,3), (4,5), (4, 3)]

W Pythonie dostepnych jest pig¢ funkcji, ktorych przeznaczeniem jest utatwienie przetwarzania
sekwencji danych. Pierwsza z nich jest funkcja apply, ktorej dziatanie polega na wywotaniu funkcji z
parametrami uzyskanymi z rozpakowania sekwencji (jest zatem identyczne z poprzedzeniem nazwy
sekwencji gwiazdka, jak zostato to omowione w podrozdziale 5.2). Przyktad uzycia:

>>> dziel=lambda x,y,z: (x+y)/z
>>> dziel(3,5,2)

4

>>> xyz=(3,5,2)

>>> apply(dziel,xyz)

4

Funkcja map dziata inaczej: pozwala wywolac¢ okreslong funkcje dla kazdego elementu sekwencji z osobna.
Zwraca listg rezultatow funkcji, o takiej samej dlugosci jak listy parametréw. Przyktady uzycia:

>>> map(lambda x: x*x, range(5))

[0,1, 4,09, 16]

>>> map(dziel, range(5), range(5), [2]*5)
[0,1,2,3,4]

W pierwszym z powyzszych przyktadow uzyto funkcji jednoparametrowej (kwadratu), pobierajac parametry
z pojedynczej listy. W drugim uzyto funkcji tréjparametrowej (zdefiniowana wczesniej dziel), jej pierwszy
parametr pobierany jest z pierwszej listy, drugi — z drugiej, a trzeci — z trzeciej.

Funkcja zip stuzy do konsolidacji danych, tj. operacji taczenia kilku list w jedna, w ktorej wartos$¢
pojedynczego elementu listy wynikowej zalezy od warto$ci pojedynczych elementow list zrédtowych.
Funkcja zip przyjmuje jako swoje parametry jednag lub wigcej sekwencji, po czym zwraca liste krotek,
ktorych poszczegolne elementy pochodzg z poszczegolnych sekwencji.

>>> zip("abcdef",[1,2,3,4,5,6])

[(a), 1), (b, 2), (¢, 3), (d', 4), (e, 5), (T, 6)]
>>> zip(range(1,10),range(9,0,-1))
[(1,9), (2 8),(3,7), (4 6),(55),(6,4), (7, 3), (8, 2), (9 1)]

W przypadku, gdy dhugosci sekwencji sg rézne, wynikowa sekwencja jest skracana do najkrotszej sposrod
nich:

>>> zip("zip",range(0,9),zip(range(0,9)))
[(Z,0,(0)), (", 1, (1)), (P 2, (2))]

Funkcja filter stuzy do filtrowania danych. Przyjmuje jako parametry funkcje oraz sekwencje, po czym
zwraca sekwencje zawierajacg te elementy sekwencji wejsciowej, dla ktorych funkcja zwrocita wartosé
logiczng True.

Tak na przyktad filtruje si¢ samogtoski:

>>> samogloska=lambda x: x.lower() in ‘aeiou’
>>> samogloska(‘'A")

True

>>> samogloska('z")

False

>>> filter(samogloska,"Ala ma kota, kot ma Ale™)
'AaaoaoaAe’

Tak wszystkie inne znaki:

>>> filter(lambda x: not samogloska(x),"Ala ma kota, kot ma Ale")
Imkt, ktm [

A tak liczby parzyste:

>>> filter(lambda x: x%2-1, range(0,11))
[0, 2,4,6,8, 10]

Funkcja reduce stuzy do agregowania danych, tj. operacji obliczenia pojedynczego wyrazenia, zaleznego
od wszystkich elementow listy zrédtowej. Funkcja reduce przyjmuje jako parametry funkcje oraz sekwencje,
zwraca pojedyncza wartosc¢.

Na poczatek wykonuje funkcje dla dwoch pierwszych elementéw sekwencji, nastepnie wykonuje funkcje
dla otrzymanego w pierwszym kroku rezultatu i trzeciego elementu sekwencji, nastgpnie wykonuje funkcje
dla otrzymanego w drugim kroku rezultatu i czwartego elementu sekwencji, itd., az dojdzie do konca
sekwencji.

Np.: suma elementéw:

>>> reduce(lambda x,y: x+y, [1,2,3])
6

Np.: iloczyn elementow:

>>> reduce(lambda x,y: x*y, [1,2,3,4])
24

Np.: suma kwadratow elementow:

>>> reduce(lambda x,y: x+y, map(lambda x: x*x, range(1,10)))
285

Na ponizszym przyktadzie zobaczymy, jak taczy¢ stosowanie poznanych tu konstrukc;ji.
Przyktad. Dane sa cztery listy: r1, r2, r3 i r4 liczace po 12 elementow. Zawieraja one warto$ci miesigcznej
sprzedazy przez kolejne cztery lata w pewnej firmie. Oblicz:

1. Sumg sprzedazy dla poszczegdlnych lat
2. Sume sprzedazy w poszczegbdlnych miesigcach przez cztery lata
3. Srednig sprzedaz miesigczng przez cztery lata

Rozwigzanie. Na poczatek przygotujemy losowe dane wejsciowe.

>>> from random import *

>>> seed(2006)

>>> rl=[randint(20,50) for i in range(12)]
>>> r2=[randint(20,50) for i in range(12)]
>>> r3=[randint(20,50) for i in range(12)]
>>> r4=[randint(20,50) for i in range(12)]
>>>r1:r2:r3;r4

[37, 22, 48, 30, 37, 22, 27, 33, 25, 37, 44, 26]
[41, 26, 29, 31, 28, 34, 32, 44, 25, 40, 43, 40]
[38, 26, 23, 23, 34, 36, 32, 38, 36, 48, 40, 34]
[38, 39, 34, 48, 26, 50, 34, 33, 50, 20, 48, 41]

Ad. 1. Aby wyliczy¢ sume sprzedazy dla poszczegdlnych lat postuzymy sie funkcja reduce:

>>> reduce(lambda x,y:x+y,r1)
388

W powyzszy sposob zagregowali§my liste elementow rl do ich sumy. Aby wyliczy¢ sume sprzedazy dla
wszystkich lat, postuzymy si¢ dodatkowo funkcja map:

>>> map(reduce,[lambda X,y:x+y]*4,[r1,r2,r3,r4])
[388, 413, 408, 461]

Wywota ona funkcje reduce kazdorazowo dla funkcji sumujacej (zwro6¢my uwage w jaki sposob ja
powielilismy, by odpowiadata liczbie lat) i danych z kolejnego roku.

Ad. 2. Aby zestawi¢ ze sobg dane o sprzedazy w poszczegolnych miesigcach dla wszystkich lat uzyjemy
funkcji zip:

>>> 7ip(rl,r2,r3,r4)
[(37, 41, 38, 38), (22, 26, 26, 39), (48, 29, 23, 34), (30, 31, 23, 48), (37, 28, 34, 26), (22, 34, 36, 50), (27, 32, 32, 34),
(33, 44, 38, 33), (25, 25, 36, 50), (37, 40, 48, 20), (44, 43, 40, 48), (26, 40, 34, 41)]

Aby wyliczy¢ sumg¢ sprzedazy miesi¢cznej dla wszystkich lat, postuzymy si¢ znang juz nam kombinacja
funkcji reduce i map:

>>> map(reduce,[lambda x,y:x+y]*12, zip(r1,r2,r3,r4))
[154, 113, 134, 132, 125, 142, 125, 148, 136, 145, 175, 141]

Ad. 3. Aby wyliczy¢ $rednig sprzedaz miesigczng przez cztery lata, postuzymy si¢ ponownie funkcja map:

>>> map(lambda x: x/4.0, map(reduce,[lambda x,y:x+y]*12, zip(r1,r2,r3,r4)))
[38.5, 28.25, 33.5, 33.0, 31.25, 35.5, 31.25, 37.0, 34.0, 36.25, 43.75, 35.25]

Jedng z cz¢éciej wykonywanych na listach operacji jest ich porzadkowanie (sortowanie i odwracanie
kolejnosci). Przypomnijmy metodg list sort:

>>>1=[3,2,5,7]
>>> |.sort()
>>> |

[2,3,5,7]

Jak wida¢, standardowo porzadkuje ona elementy od najmniejszego do najwickszego. Metoda sort
posiada jednak parametr reverse, ustawienie ktorego wartosci na True pozwala zmieni¢ porzadek sortowania:

>>>|=[3,2,5,7]
>>> |.sort(reverse=True)
>>> |

[7,5,3,2]

W pewnych przypadkach, problem, ktory mamy z sortowaniem jest znacznie bardziej
skomplikowany niz zmiana kolejnos$ci. Zatézmy, ze mamy list¢ wyrazéw, ktorg chcielibySmy posortowad
alfabetycznie:

>>> L=["Ala","Ola","pies","dziadek","Tola","smyk"]
>>> L.sort()
>>> L

[Ala', 'Ola’, 'Tola', 'dziadek’, 'pies’, 'smyk’]

Jak wida¢, standardowe sortowanie nie jest poprawne, gdyz umieszcza wszystkie wyrazy pisane z
duzej litery przed tymi pisanymi z matej. Moze w tym pomodc parametr key, pozwalajacy okresli¢ funkcje,
ktéra skonwertuje dane do postaci zapewniajacej prawidtowy rezultat porownania. W tym przypadku chodzi
o sprowadzenie wszystkich wyrazéw do matych liter — uzyjemy zatem metody lower klasy str (jak widac,
metody mozemy wywolywac taczac ich nazwy nie tylko z nazwami konkretnych obiektow, ale takze z
nazwg samej klasy — sam obiekt przekazany za$ zostanie jako pierwszy parametr metody):

>>> L=["Ala","Ola","pies","dziadek","Tola","smyk"]
>>> L.sort(key=str.lower)

>>>

>>> L

[Ala’, 'dziadek’, 'Ola’, 'pies’, 'smyk’, 'Tola’]

Inny przyktad wykorzystania parametru key to sortowanie liczb zapisanych jako napisy. Domyslnie
sa one sortowane jako ciagi cyfr, co daje porzadek leksykograficzny, a nie odpowiadajacy warto$ciom liczb:

>>> L:[Illlll,ll2ll’II20II’II7II,II55II]
>>> | .sort()
>>> L

[11', 2", 20", '55', "7

Aby uzyska¢ sortowanie wedtug wartosci, wystarczy skonwertowac napisy na liczby uzywajac
funkcji int:

>>> L:[Illlll,II2II’II20II’II7II,II55II]
>>> L.sort(key=int)

>>> L

[l2l, I7I, Illl, |20I, I55I]

Zauwazmy, ze parametr key jest w istocie funkcja (funkcje sg zatem specyficznym typem danych,
tzw. typem proceduralnym). Takg sytuacje (wywotanie z funkcji innej funkcji, przekazanej do niej jako
parametr) nazywamy wywolaniem zwrotnym (ang. callback).

Parametryzacja metody sort idzie jeszcze dalej, pozwalajac podmieni¢ catg funkcje wykonujaca
poréwnanie. Domyslnie jest to funkcja cmp; podmieniona funkcja musi tak samo jak cmp zwracac 0 dla
dwoch parametrow rownych sobie oraz 1 lub -1 w przypadku gdy zachodzi nierdwnos¢.

>>>cmp(1,2)

>>> cmp(2,2)
0

>>> cmp(3,2)
1

Sortowanie liczb zapisanych jako napisy mogtoby wyglada¢ wiec tak:

>>> def porownaj(x,y):
return cmp(int(x), int(y))

>>> | =["11","2","20","7","55"]
>>> |.sort(cmp=porownaj)
>>> L

[2', 7,11, '20", '557

Funkcje porownaj zdefiniowaliSmy po to, by wykorzysta¢ ja w jednym tylko miejscu. Python
pozwala unikna¢ definicji takich funkcji jednorazowego uzytku dzigki wyrazeniu lambda. Wyrazenie to ma
posta¢ lambda argumenty: wyrazenie, a jego rezultatem jest anonimowa funkcja (ktérg mozna od razu
wykona¢, przekazaé jako parametr, lub zapamigta¢ w zmiennej — tym samym nadajac jej nazwe).

Zamiast definiowa¢ funkcje porownaj moglibySmy napisac:

>>> |=["11","2","20","7","55"]
>>> L.sort(cmp=lambda x,y: cmp(int(x), int(y)))
>>> L

Wyrazen lambda mozna oczywiscie uzywacé w kazdej sytuacji, w ktorej moglibySmy uzy¢ na ich miejscu
funkgji, np.:

>>> print "%.2f" % (lambda X,y: x**y)(2,0.5)
1.41

Podstawowa wada wyrazen lambda to niemozno$¢ wykorzystania w nich instrukcji nie bedacych
wyrazeniami, np. print, if, for, while, itp. — cho¢ istnieja sprytne sposoby na obejscie tego problemu.
Jakkolwiek wyrazenia lambda bywaja wygodne, nie nalezy ich naduzywac¢, bo prowadzi to do
nieprzejrzystego kodu zrédtowego.

Jeszcze jeden przyktad na poréwnywanie, tym razem sekwencji:

>>> L =[("Adam",15), ("Bogdan",19), ("Ala",17), ("Zenobia", 14)]
>>> L.sort()
>>> L

[(Adam’, 15), (Ala', 17), (Bogdan', 19), (‘Zenobia', 14)]

Jak pamigtamy, porownywanie sekwencji polega na poréwnaniu miedzy soba pierwszych ich
elementow, tylko gdy sa rowne — drugich, itd. Zalézmy, ze powyzsza list¢ chcielibySmy posortowac wedtug
lat, nie imion. Mozna to zrobi¢ nast¢pujaco (parametr cmp jest pierwszym parametrem metody sort, jego
warto$¢ moze wigc by¢ podawana bez nazwy):

>>> L.sort(lambda x,y: cmp(x[1],y[1]))
>>> L

[(‘Zenobia', 14), (‘Adam’, 15), (‘Ala’, 17), ('Bogdan’, 19)]
Jak wida¢, elementy listy sg teraz utozone wedtug rosngcego wieku (drugiego elementu krotki).

Cwiczenie 1. Uzywajac wytwornika zbuduj liste zawierajaca wszystkie liczby podzielne przez 3 z zakresu
od 1 do 33. Nastepnie:
e Uzywajac funkcji filter usun z niej wszystkie liczby parzyste
e Uzywajac wyrazenia lambda i funkcji map podnie$ wszystkie elementy tak otrzymane;j listy do
szescianu
e Odpowiednio uzywajac funkcji reduce i len oblicz $rednig arytmetyczng z elementow tak
otrzymanej listy.
Cwiczenie 2. Stworz trzy listy zawierajace po 5 elementow: nazwiska — z nazwiskami pracownikow,
godziny — z liczba przepracowanych godzin, stawka — ze stawka w ztotych za godzing pracy. Wykorzystujac
funkcje zip, map, reduce i filter (oraz, ewentualnie, wytworniki list) wySwietl nazwiska i wyptaty (iloczyn

stawki godzinowe;j i liczby przepracowanych godzin) tych pracownikéw, ktorzy zarobili wigcej, niz
wyniosta srednia wyptata.

LEKCJA 12 — PLIKI

Do tej pory zajmowalismy si¢ wylgcznie przechowywaniem danych w pamigci operacyjnej komputera.
Pamie¢¢ operacyjna komputera jest jednak ulotna. Aby zabezpieczy¢ dane nalezy zapisac je w pliku
dyskowym.

Jezeli w trybie interaktywnym Pythona wpiszemy:
>>> f1 = open("plikl.txt","wb")

— spowodujemy stworzenie i otwarcie do zapisu pliku "plik1.txt" w aktualnym katalogu dyskowym (po
uruchomieniu IDLE’a jest to katalog, w ktérym zainstalowano Pythona, domyslnie ,,C:\Python24”. Cho¢
zapisywac bedziemy w pliku sam tekst, uzywamy trybu binarnego, w celu uniknig¢cia problemu z ustalaniem
biezacej pozycji w pliku.
Obiekty plikowe maja trzy podstawowe atrybuty:
e name zawiera nazwe pliku (tak jak podano ja przy otwarciu)

>>> fl.name
'plikl.txt'

e mode okre$la tryb, w jakim otwarto plik

>>> fl.mode
lwl

e closed okre$la czy plik jest zamkniety

>>> fl.closed
False

Pliki obstugujemy przy uzyciu nastgpujacych metod:
e write zapisuje do pliku napis

>>> fl.write ("Poczatek pliku")

Mozemy teraz, korzystajac z Eksploratora Windows przejs$¢ do katalogu, w ktorym znajduje si¢ plik
(przypominam, standardowo $ciezkg dostepu bedzie ,,C:\Python24\plik1.txt”) i otworzy¢ go w Notatniku.
Plik powinien znajdowac¢ si¢ na swoim miejscu, jednak prawdopodobnie bedzie pusty. Winne oczywiscie
jest buforowanie.

e flush zapisuje dane z bufora do pliku

>>> f1.flush ()
Jezeli teraz ponownie otworzymy ,,plik1.txt” w Notatniku, powinniémy zobaczy¢ nastepujgca zawartosc:
Poczatek pliku

Metoda write nie konczy zapisanych danych znakiem konca linii. By przejs$¢ do kolejnej linii, musimy sami
zapisaé taki znak (\n):

>>> fl.write ("\nDruga linia")

e close zapisuje dane z bufora do pliku i zamyka plik

>>> fl.close()

Normalne zakonczenie programu powoduje automatyczne zamknigcie wszystkich otwartych plikow, jednak
programisci powinni samodzielnie zamyka¢ wszystkie pliki, ktére otwarli.

Jezeli teraz ponownie otworzymy ,,plik1.txt” w Notatniku (oczywiscie poprzednig wersjg, jezeli nadal jest
otwarta, nalezy juz zamkna¢, gdyz Notatnik nie aktualizuje zawarto$ci edytowanego dokumentu po jego
otwarciu z dysku), powinni§my zobaczy¢ nastepujacg zawartosc:

Poczatek pliku
Druga linia

Sprobujemy teraz otworzy¢ zapisany przed chwila plik do modyfikacji:
fl = open("plikl.txt","r+b")

e read odczytuje z pliku napis

>>> print fl.read()
Poczatek pliku
Druga linia

e tell podaje aktualng pozycj¢ w pliku

>>> fl.tell()
26L

e seek ustawia pozycj¢ w pliku na podang

>>> fl.seek(0)
Modyfikujemy zawartos$¢ pliku zapisujac na istniejacej wezesniej pozycji:
>>> fl.write("Pierwsza linia")

Aby przesunaé pozycje pliku nie na pozycje wyrazong absolutnie (od poczatku pliku), lecz wzglednie (od
aktualnej pozycji), jako drugi parametr podajemy 1:

>>> fl.seek(-14,1)
Mozemy wezytywac tylko fragment zawartosci pliku o okreslonej dtugosci:

>>> print fl.read(14)
Pierwsza linia

Aby przesuna¢ pozycje¢ pliku wzgledem jego konca, jako drugi parametr podajemy 2:
>>> fl.seek(0,2)

e writelines zapisuje do pliku sekwencje¢ napiséw (nie dodajac automatycznie separatorow):

>>> fl.writelines (["\n3 linia™,"\n4 linia","\n5 linia"])

e readlines wczytuje z pliku sekwencje napisow:

>>> f1l.seek(0)

>>> a=fl.readlines|()

>>> print a

['Pierwsza linia\n', 'Druga linia\n', '3 linia\n', '4 linia\n', '5 linia']

Zauwazmy, ze readlines wykorzystuje znaki kofica linii do podziatu tekstu na napisy, nie usuwa ich
jednak automatycznie.
e truncate Skraca plik na podanej pozyciji:

>>> fl.truncate (26)
>>> fl.seek (0)

>>> print fl.read()
Pierwsza linia
Druga linia

e isatty— zwraca True, jezeli plik jest dotagczony do urzadzenia terminalowego:

>>> fl.isatty ()
False

Przyktadami takich plikow sg sys.stdout I sys.stdin (pamigtajmy przy tym, ze sg to strumienie kierujace
dane z/do konsoli, stad nie wszystkie operacje sg dla nich dostepne):

>>> import sys
>>> sys.stdout.isatty ()
True

Nalezy pamigtac¢, ze uzytkownik uruchamiajac program moze przekierowac jego wejscie 1 wyjscie z
poziomu systemu operacyjnego. Mozna to sprawdzi¢ wiasnie dzigki metodzie isatty — jezeli dla ktoregos z
podanych plikdw zwraca ona warto$¢ False, wejscie lub wyjscie zostalo przekierowane do zwyktego pliku.
Atrybuty sys.stdout I sys.stdin sg zmiennymi, mozna wi¢c zmieni¢ je na dowolny inny plik,
przekierowujac w ten sposdb wyjscie/wejscie wewnatrz programu:

>>> import sys

>>> ekran=sys.stdout

>>> sys.stdout = open("wyjscie.txt","w")
>>> print "Cokolwiek"

>>> print "Gdzie to sie wyswietlito?"
>>> sys.stdout=ekran

>>> print open ("wyjscie.txt","r") .read()
Cokolwiek

Gdzie to sie wyswietlito?

Co wigcej, obiekty plikowe w Pythonie wcale nie muszg by¢ potaczone z jakimikolwiek plikami
fizycznymi. Wystarczy tylko, ze nalezg do klasy posiadajacej uzywane metody. Mozna to wykorzysta¢ np.
do formatowania danych wyswietlanych instrukcjg print:

>>> class centrowanie:
def write(self, s):
ekran.write(s.center (60))

>>> sys.stdout=centrowanie ()
>>> print "Cokolwiek"
Cokolwiek

>>> print "O! Jak 1adnie"
0! Jak tadnie

>>> sys.stdout=ekran
>>> print "Juz normalnie!"
Juz normalnie!

Przyktad 1. Program, ktory kopiuje plik o nazwie podanej przez uzytkownika, wydtuzajac nazwe nowego
pliku o prefiks ,,kopia”.
Rozwigzanie z komentarzem:

n=raw_input ("Podaj peilna nazwe pliku do skopiowania>")# n - nazwa oryginalu

oryg = file(n,"rb") # otwieramy oryginal do odczytu
kop = file("kopia "+n,"wb")# otwieramy kopie do zapisu
while True: # powtarzamy

b = oryg.read (1) # wczytujemy 1 bajt z oryginatu

if not b: break
kop.write (b)

nic sie nie wczytato? Koniec pliku!
zapisujemy 1 bajt do kopii
kop.close () zamykamy kopie

oryg.close () zamykamy oryginat

print "Kopiowanie zakonczone pomys$lnie" # komunikat konhcowy

S = SE SE

Przyktad uruchomienia:

>>> RESTART
>>>

Podaj peina nazwe pliku do skopiowania>plikl.txt
Kopiowanie zakohczone pomy$lnie

Przyktad 2. Program ,,cezar.py”, ktory szyfruje wskazany przez uzytkownika plik tekstowy w oparciu o
szyfr Cezara (przesuwanie liter w alfabecie o podang wartos¢).
Rozwigzanie z komentarzem:

t=raw_input ("Podaj peina nazwe pliku >")
p=input ("Podaj przesuniecie >")
f1l = open(t,"r+b") # plik otwarty do modyfikacji

s=fl.read() # wczytujemy do s tekst zZrddiowy
sz="" # sz oznacza tekst zaszyfrowany
for ¢ in s: # dla kazdego znaku w s
a=ord (c) # wyliczamy kod ASCII
if a > 32: # znakdédw biatych i sterujacych nie szyfrujemy
c=chr ((a+p) % 256) # inne przesuwamy
sz+=c # dodajemy do sz
f1l.seek (0) # ustawiamy pozycje pliku na jego poczatku
fl.write(sz) # zapisujmy sz
fl.close() # zamykamy plik
Wyprdobujmy:
>>> RESTART

>>>
Podaj peina nazwe pliku >plikl.txt
Podaj przesuniecie >3

Przyjrzyjmy si¢ teraz (w notatniku) zawartosci pliku p1ik1.txt po zaszyfrowaniu:

Slhuzv}d olgld
Guxjd olgld

Aby rozszyfrowac plik nalezy jeszcze raz uruchomic program ,,cezar.py”, 1 poda¢ jako przesunigcie ujemng
warto$¢ liczby podanej przy szyfrowaniu:

>>> RESTART
>>>

Podaj peina nazwe pliku >plikl.txt

Podaj przesuniecie >-3

Przyjrzyjmy si¢ teraz zawartosci pliku p1ik1.txt po odszyfrowaniu:

Pierwsza linia
Druga linia

Cwiczenie 1. Napisz program ,.type.py”, ktory wyswietli na ekranie zawartos¢ pliku o nazwie podanej przez
uzytkownika.
Cwiczenie II. Napisz program , lista.py”, ktory:
a. a. Jezeli na dysku nie ma pliku ,lista.txt”, wezyta od uzytkownika list¢ studentow (imig,
nazwisko, grupa) i1 zapisze ja do pliku , lista.txt”
b. b. Jezeli na dysku jest juz plik ,,lista.txt”, wezyta z niego liste studentéw (imi¢, nazwisko,
grupa) , a uzytkownikowi umozliwi dopisywanie nowych studentoéw do listy, na koniec
zapisze liste z powrotem do pliku.

Cwiczenie II1. Napisz program ,,losuj_plik.py”, ktéry wezyta od uzytkownika trzy liczby catkowite: a, b i n,
a nastgpnie wygeneruje plik, zawierajacy n linii, z ktorych w kazdej znajdzie si¢ losowa liczba catkowita z
zakresu od a do b. W roznych liniach majg znalez¢ si¢ rozne liczby, jednak ta sama liczba moze wystepowac
w pliku wigcej niz raz.

Cwiczenie IV. Napisz program ,,losuj_plik2.py”, réznigcy si¢ od programu z éwiczenia III tym, ze w calym
pliku okreslona liczba moze wystapi¢ tylko jeden raz. Plik nie moze mie¢ przy tym wigcej linii, niz wynosi
dhugosc¢ zakresu od a do b.

LEKCJA 13 - OPERACJE NA PLIKACH 1
KATALOGACH

Jednym z podstawowych zadan systemu operacyjnego jest obstuga dyskowego systemu plikdéw. Na poprzedniej lekcji
omowiono funkcje Pythona stuzgce do obstugi plikéw jako zbioréow danych, ich tworzenia i modyfikacji. W tym
podrozdziale zostang oméwione funkcje stuzgce do manipulacji plikami w catosci, ich przenoszenia i usuwania oraz
funkcje obstugujace katalogi dyskowe.

Funkcje, ktérymi bedziemy sie zajmowac zawarte sg w module standardowym os:

>>> from os import *
Aby sprawdzi¢, w jakim dziatamy obecnie katalogu dyskowym uzywamy funkcji getcwd:

>>> getcwd()
'C:\\Python24'

Aby zmienié¢ biezacy katalog dyskowy na inny, uzywamy funkcji chdir(nowy katalog):

>>> chdir(‘tcl’)
>>> getcwd()
'C:\\Python24\\tcl'

Aby poznac zawartos$¢ dowolnego katalogu dyskowego, uzywamy funkcji listdir(katalog); dla biezgcego katalogu:

>>> listdir(.)
[tcl84.lib', ‘tclstub84.lib, 'tix8184.1ib, 'tk84.Iib, ‘tkstub84.lib, 'tk8.4', 'tix8.1', 'tcl8.4', 'regl.1', 'ddel.2]

Dla podkatalogu 'tcl8.4":

>>> |istdir('tcl8.4")
['auto.tcl', 'history.tcl', "init.tcl’, 'ldAout.tcl', 'package.tcl’, 'parray.tcl’, 'safe.tcl’, 'tclindex’, 'word.tcl', 'tcltest2.2', 'opt0.4',
'msgcatl.3', 'http2.4', 'http1.0', 'encoding']

Oczywiscie, réwnie dobrze mozemy podac $ciezke absolutng katalogu:

>>> |istdir(r'C:\Python24\tcl\tcl8.4")
['auto.tcl', 'history.tcl', "init.tcl’, 'ldAout.tcl', 'package.tcl’, ‘parray.tcl’, 'safe.tcl’, 'tclindex’, ‘word.tcl', 'tcltest2.2', ‘opt0.4',
'msgcatl.3', 'http2.4', 'httpl.0', 'encoding']

Aby filtrowac pliki i katalogi wedtug okreslonego wzorca, musimy postuzy¢ sie funkcjg fnmatch(nazwa, wzorzec) z
modutu fnmatch. Funkcja ta zwraca prawde, wtedy i tylko wtedy, gdy nazwa odpowiada wzorcowi:

>>> jmport fnmatch

>>> fnmatch.fnmatch('Python’,'P*n’)
True

>>> fnmatch.fnmatch('Python’,'P*e’)
False

Lista plikdw z rozszerzeniem ‘tcl’:

>>> [x for x in listdir(r'C:\Python24\tcl\tcl8.4") if \
fnmatch.fnmatch(x,*.tcl")]
['auto.tcl', 'history.tcl', "init.tcl’, 'ldAout.tcl', 'package.tcl’, ‘parray.tcl’, 'safe.tcl’, ‘word.tcl']

Lista plikdw o nazwach koniczacych sie na ‘t’ lub ‘y’:

>>> [x for x in listdir(r'C:\Python24\tcl\tcl8.4") if \
fnmatch.fnmatch(x,*[ty].*"]

['history.tcl', 'init.tcl', 'ldAout.tcl', 'parray.tcl]
Zblizony rezultat otrzymamy uzywajac funkcji glob z modutu glob:

>>> for x in glob.glob(r'C:\Python24\tcl\tcl8.4*[ty].*"):
print x

C:\Python24\tcl\tcl8.4\history.tcl
C:\Python24\tcl\tcl8.4\init.tcl

C:\Python24\tcl\tcl8.4\ldAout.tcl
C:\Python24\tcl\tcl8.4\parray.tcl

Jak widag, sciezki do znalezionych obiektéw dyskowych zwracane sg w takiej postaci, w jakiej podano jej we wzorcu
(w tym przypadku absolutne). Aby rozdzieli¢ Sciezke absolutng na katalog zawierajacy plik i nazwe pliku uzywamy
funkcji path.split:

>>> path.split('C:\Python24\tcl\tcl8.4\history.tcl’)
('C:\\Python24\tcl\tcl8.4', 'history.tcl")
>>> for x in glob.glob(r'tcl8.4*[ty].*"):

print path.split(x)[1]

history.tcl
init.tcl

IdAout.tcl
parray.tcl

Funkcja path.join tgczy cigg katalogéw w Sciezke:

>>> path.join('C:','Python24''tcl','tcl8.4",'history.tcl’)
'C:Python24\\tcl\\tcI8.4\\history.tcl'

>>> path.join(r'C:\Python24','tcl','tcl8.4\history.tcl")
‘C:\\Python24\\tcl\\tcI8.4\\nhistory.tcl'

Funkcja path.isabs sprawdza, czy podana sciezka jest absolutna:

>>> path.isabs(r'tcl8.4\history.tcl’)

False

>>> path.isabs(r'C:\Python24\tcl\tcI8.4\history.tcl")
True

Funkcja path.exists sprawdza, czy dany obiekt dyskowy istnieje:

>>> path.exists('C:\\Python24\\tcI\\tcI8.4\\history.tcl")
True

>>> path.exists('C:\\Python24\\tcl\\nowy")

False

Funkcja mkdir(nazwa katalogu) tworzy na dysku nowy katalog:

>>> mkdir('nowy')

>>> path.exists('C:\\Python24\\tcl\\nowy")

True

>>> |istdir(".)

[tcI84.lib, 'tclstub84.lib', 'tix8184.lib', 'tk84.lib', ‘tkstub84.lib', 'tk8.4", 'tix8.1', 'tcl8.4', 'regl.1’, 'ddel.2', 'nowy']

Funkcja rename(dotychczasowa nazwa, nowa nazwa) zmienia nazwe pliku lub katalogu:

>>> rename('stary’,'nowy")
>>> path.exists('C:\\Python24\\tcl\\nowy")

False
>>> |istdir(".)
[tcl84.1ib', 'tclstub84.lib', 'tix8184.lib', 'tk84.lib', 'tkstub84.lib', 'tk8.4', 'tix8.1", 'tcl8.4', 'regl.1’, 'ddel.2’, 'stary']

Moze takze stuzy¢ do przenoszenia obiektéow dyskowych pomiedzy katalogami:

>>> file('plik’,'w").close()

>>> listdir(".")

['tcl84.lib', 'tclstub84.lib', '1ix8184.lib'", 'tk84.1ib', 'tkstub84.lib', 'tk8.4', 'tix8.1", 'tcl8.4', 'regl.1l’, 'ddel.2', 'stary’, 'plik’]
>>> rename('plik’,r'stary\plik’)

>>> path.exists('C:\\Python24\\tcl\\plik')

False

>>> path.exists('C:\\Python24\\tcI\\stary\\plik’)
True

>>> rename(r'stary\plik','plik’)

>>> path.exists('C:\\Python24\\tcl\\stary\\plik")
False

>>> path.exists('C:\\Python24\\tcI\\plik")

True

Funkcja path.isfile sprawdza, czy dany obiekt dyskowy jest plikiem:

>>> path.isfile('stary")
False

>>> path.isfile('plik’)
True

Funkcja path.isdir sprawdza, czy dany obiekt dyskowy jest katalogiem:

>>> path.isdir(‘plik’)
False

>>> path.isdir('stary")
True

Funkcja path.ismount sprawdza, czy dany obiekt dyskowy jest dyskiem:

>>> path.ismount('stary’)
False

>>> path.ismount(‘'C:\\")
True

Funkcja path.getsize zwraca dtugos¢ pliku w bajtach:
>>> path.getsize('plik’)

oL

>>> f=file('plik’,'w"); f.write('Siedem!"); f.close()
>>> path.getsize('plik’)

7L

>>> f=file('plik’,'w"); f.write("**100); f.close()

>>> path.getsize('plik’)

100L

Dla katalogéw zwracane jest zawsze zero:

>>> path.getsize('stary’)
oL
>>> for x in listdir(’."):
print x, path.getsize(x)

tcl84.1ib 190886
tclstub84.lib 2272

tix8184.lib 49054
tk84.lib 165420
tkstub84.lib 2996
tk8.4 0

tix8.10

tcl8.4 0

regl.10

ddel.20

stary 0

plik 100

Funkcja path.getctime zwraca czas stworzenia, a path.getmtime czas ostatniej modyfikacji obiektu dyskowego:

>>> from time import ctime
>>> ctime(path.getctime('plik’))
"Thu Oct 12 12:26:50 2006’

>>> ctime(path.getmtime('plik’))
"Thu Oct 12 12:33:16 2006’

Funkcja walk(katalog nadrzedny, kolejnosc) stuzy do rekursywnego przechodzenia podanego katalogu wraz ze
wszystkimi jego podkatalogami. Dla kazdego znalezionego katalogu (tgcznie z nadrzednym) zwraca tréjke: (sciezka,
podkatalogi, pliki), gdzie Sciezka oznacza $ciezke dostepu do katalogu, podkatalogi — liste nazw zawartych w nim
podkatalogdw, pliki — liste nazw zawartych w nim plikdw. Parametr kolejnos¢ (domyslnie True) ustawiony na False
zwraca katalogi w odwrotnym porzadku (zaczyna od najgtebiej potozonego; moze by¢ to przydatne, jezeli
zamierzamy np. kasowac¢ podkatalogi).

>>> for sciezka, podkatalogi, pliki in walk(r'C:\Python24\Tcl’):
print "W katalogu %s znajduje si¢ %i bajtow w %i plikach'\

% (sciezka, sum(path.getsize(path.join(sciezka, nazwa)) \

for nazwa in pliki), len(pliki))

W katalogu C:\Python24\Tcl znajduje si¢ 410728 bajtow w 6 plikach

W katalogu C:\Python24\Tcl\tk8.4 znajduje si¢ 436678 bajtow w 30 plikach

W katalogu C:\Python24\Tcl\tk8.4\msgs znajduje si¢ 51740 bajtow w 12 plikach

W katalogu C:\Python24\Tcl\tk8.4\images znajduje sie¢ 97217 bajtéw w 13 plikach

W katalogu C:\Python24\Tcl\tk8.4\demos znajduje si¢ 269352 bajtéw w 54 plikach

W katalogu C:\Python24\Tcl\tk8.4\demos\images znajduje si¢ 277824 bajtow w 11 plikach
W katalogu C:\Python24\Tcl\tix8.1 znajduje si¢ 596476 bajtow w 77 plikach

W katalogu C:\Python24\Tcl\tix8.1\pref znajduje si¢ 236295 bajtoéw w 36 plikach

W katalogu C:\Python24\Tcl\tix8.1\bitmaps znajduje si¢ 18805 bajtoéw w 58 plikach

W katalogu C:\Python24\Tcl\tcl8.4 znajduje si¢ 121278 bajtoéw w 9 plikach

W katalogu C:\Python24\Tcl\tcl8.4\tcltest2.2 znajduje sie 98660 bajtow w 2 plikach

W katalogu C:\Python24\Tcl\tcl8.4\opt0.4 znajduje sie 33631 bajtoéw w 2 plikach

W katalogu C:\Python24\Tcl\tcl8.4\msgcat1.3 znajduje si¢ 13083 bajtéw w 2 plikach
W katalogu C:\Python24\Tcl\tcl8.4\http2.4 znajduje si¢ 24706 bajtow w 2 plikach

W katalogu C:\Python24\Tcl\tcl8.4\http1.0 znajduje si¢ 10494 bajtow w 2 plikach

W katalogu C:\Python24\Tcl\tcl8.4\encoding znajduje si¢ 1413736 bajtow w 78 plikach
W katalogu C:\Python24\Tcl\regl.1 znajduje si¢ 13182 bajtow w 2 plikach

W katalogu C:\Python24\Tcl\dde1.2 znajduje sie 13646 bajtow w 2 plikach

W katalogu C:\Python24\Tcl\stary znajduje si¢ 0 bajtow w 0 plikach

Funkcja remove usuwa z dysku plik, a rmdir katalog o podanej nazwie:

>>> remove('plik’)
>>> path.exists('plik’)
False

>>> rmdir(‘stary’)

>>> path.exists('stary’)
False

Cwiczenie 1. Napisz program, ktéry znajdzie w podanym przez uzytkownika katalogu i wszystkich jego podkatalogach
wszystkie pliki, ktore zawierajg podany przez uzytkownika napis.

Cwiczenie 2. Napisz program, ktéry znajdzie w podanym przez uzytkownika katalogu i wszystkich jego podkatalogach
najstarszy i najdtuzszy plik.

Cwiczenie 3. Napisz program, ktéry znajdzie w podanym przez uzytkownika katalogu i wszystkich jego podkatalogach
wszystkie zdublowane pliki, czyli takie pliki, ktérych nazwa wystepuje jednoczesnie w wiecej niz jednym miejscu.

LEKCJA 14 - PROSTA BAZA DANYCH

Wiemy juz jak zapisywa¢ w plikach napisy. Co jednak nalezaloby zrobi¢, gdyby$smy chcieli zapisa¢ w pliku
obiekty innych typoéw? Istnieje co prawda funkcja str, zamieniajgca obiekt standardowego typu na postac
tekstowa:

lista = [1, 2, "trzy", 4]
>>> g=str(lista)
>>> s

"[l, 2, 'tIZy', 41"

Problem w tym, Ze nie da si¢ tatwo wykona¢ odwrotnej transformacji, a doktadniej rzecz ujmujac, jej
rezultat jest daleki od pozadanego:

>>> 1=1list (s)
>>> 1

[l[l, lll, l,l,] l, |2|, l,l,] l, HIH, ltl, lrI, 'Z', |y|, HIH, l,l,] l, |4|, l]l]

Na szcze$cie w Pythonie dostepny jest modul pickle, stuzacy, jak nazwa wskazuje, do peklowania
obiektow. Programisci piszacy w jezykach .NET lub Javie uzywaja na okreslenie tego procesu bardziej
gornolotnego terminu, a mianowicie moéwig o serializacji. Serializacja obiektu polega na przeksztatceniu
danych go opisujacych w ciag bajtow (funkcja dumps), z ktérego mozna pdzniej odtworzy¢ taki sam obiekt
(funkcja 10ads).

>>> import pickle

>>> zapis=pickle.dumps (lista)
>>> l=pickle.loads (zapis)

>>> 1

(1, 2, 'trzy', 4]

Jak wida¢ powyzej, udato nam si¢ zachowac¢ i odtworzy¢ list¢ w zmiennej zapis. Sam zapis jest napisem o
ponizszej zawartosci:

>>> zapis
"(1pO0\nIl\naI2\naS'trzy'\npl\nal4\na."

Zalézmy teraz, ze chcieliby$my razem z listag zachowac¢ i1 stownik. To rowniez nie jest trudne, pod
warunkiem umieszczenia ich w krotce:

>>> slownik={"a":"b",1:2}

>>> zapis=pickle.dumps((lista,slownik))
>>> del lista

>>> del slownik

>>> (lista,slownik)=pickle.loads (zapis)
>>> lista; slownik

(1, 2, 'trzy', 4]

{'a': 'b', 1: 2}

Dzigki pickle mozemy takze zachowywac obiekty nalezace do klas zdefiniowanych przez nas samych:

>>> class wymiary3:
x=0; y=0; z=0

>>> w3=wymiary3 ()

>>> w3.x=1; w3.y=2; w3.z=3
>>> zapis=pickle.dumps (w3)
>>> del w3

>>> w3=pickle.loads (zapis)
>>> w3.x; w3.y; w3.z

Napis reprezentujacy zapeklowany obiekt mozemy zapisa¢ samodzielnie do pliku, mozemy tez postuzy¢ si¢
funkcjami dump i 1oad, ktore (w odréznieniu od dumps I 1oads) zachowujg obiekt w pliku (a nie napisie):

>>> fl=file("trzy rzeczy.txt","w+")

>>> pickle.dump ((lista,slownik,w3),fl)
>>> lista=[]; slownik={}; w3=wymiary3()
>>> lista; slownik; w3.x

{}
0

>>> fl.seek(0)

>>> (lista,slownik,w3)=pickle.load(fl)
>>> lista; slownik; w3.x

(1, 2, 'trzy', 4]

{'a': 'b', 1: 2}

1

Zachowywanie wielu obiektow w pojedynczej krotce jest wygodne, dopoki ich liczba nie osiggnie zbyt
duzej wartosci. Wtedy o wiele wygodniejsze jest uzycie stownika. Najprostszym takim rozwigzaniem
dostepnym w Pythonie jest baza danych zdefiniowana w module dumbdbm, stanowigca w istocie
implementacj¢ pliku o organizacji indeksowo-sekwencyjnej. Metoda dumbdbm. open tworzy na dysku (lub
otwiera istniejacg) prostg baze¢ danych o podanej nazwie (w istocie na dysku tworzone sg dwa pliki:
indeksowany z rozszerzeniem ,,.dat” i indeksujacy z rozszerzeniem ,,.dir”). Obstuga bazy jest identyczna jak
obstuga stownika, z tg r6znica, ze wszystkie zachowane w niej dane przechowywane sa nie w pamieci, lecz
na dysku:

>>> import dumbdbm
>>> db=dumbdbm.open ("prosta baza")

>>> db['napis']="hej ho!"
>>> db['napis']
'hej ho!'

Bazy danych typu dbm pozwalajg uzywac tylko napisow jako kluczy (co jest do przyjecia) i wartosci (co
stanowi pewien problem). Stad proba zachowania w niej obiektu innego niz napis typu, nieuchronnie konczy
si¢ bledem:

>>> db['lista']=lista

Traceback (most recent call last):
File "<pyshell#282>", line 1, in -toplevel-
db['lista']=lista
File "C:\Python24\lib\dumbdbm.py", line 160, in setitem
raise TypeError, "keys and values must be strings"
TypeError: keys and values must be strings

Rozwigzaniem jest oczywiscie peklowanie, jednak w praktyce nie jest to zbyt wygodne:

>>> db['lista']=pickle.dumps(lista)
>>> pickle.loads(db['lista'])
[1, 2, 'trzy', 4]

dlatego nasza prostg baze juz zamkniemy

>>> db.close ()

a zajmiemy si¢ blizej modulem shelve, ktéry oferuje analogiczny sposob dostgpu do danych (podobny
stownikowi), umozliwiajgc jednak zachowywanie obiektow dowolnego typu (nie tylko napisow):

>>> import shelve

>>> db = shelve.open ('baza')
>>> db['lista']=lista

>>> db['lista']

(1, 2, 'trzy', 4]
>>> db['slownik']=slownik
>>> db['slownik']
{'a': 'b', 1: 2}

W opisywanej wersji Pythona, shelve postuguje si¢ lepszym niz dumbdom motorem bazy danych, a
mianowicie dbhash (ktory z kolei opiera si¢ na motorze Bsp). Nadal jednak jest to motor nie pozwalajacy na
obstuge duzych baz danych. W przypadku takiej koniecznos$ci wlasciwym rozwigzaniem jest podtaczenie
Pythona do zewngtrznej bazy danych (np. poprzez sterowniki ODBC), co rOwniez jest czynnoscig prosta,
jednak z pewnos$cig wykraczajaca poza podstawy programowania (dla naszych skromnych potrzeb w
zupetno$ci wystarczajacy jest juz dumbdbm), stad problematyki tej nie bedziemy tu podejmowac, odsytajac
zainteresowanych do specjalistycznej literatury.
Baze danych stworzong przy pomocy shelve obslugujemy tak jak stownik, a zatem dostepne sg wszystkie
operacje i metody dziatajace dla prawdziwych stownikow:

e Ilos¢ elementow:

>>> len (db)
2

e Sprawdzenie klucza:

>>> 'lista' in db
True

o Listakluczy:

>>> db.keys ()
['"lista', 'slownik']

o Lista warto$ci:

>>> db.values ()
(1, 2, 'trzy', 41, {'a': 'b', 1: 2}]

o Lista kluczy 1 wartosci:

>>> db.items ()
[('lista', [1, 2, 'trzy', 4]1), ('slownik', {'a': 'b', 1: 2})]

e Modyfikacja wartosci:

>>> db['lista']=[3,2]

e Usunigcie elementu:

>>> del db['lista']
>>> db.items ()
[('"slownik', {'a': 'b', 1: 2})]

e Usunigcie wszystkich elementow:

>>> db.clear ()

>>> db.items ()

[]

Ponadto, baz¢ mozna zamkna¢:

>>> db.close ()

Przyjrzymy si¢ teraz programowi, w ktorym wykorzystano opisane wyzej rozwigzania.

Przyktad. Program ‘parking.py’ stuzy do ewidencjonowania samochodow stojacych na ptatnym parkingu.
Realizuje nastepujace funkcje: wjazd (zapisanie numeru samochodu i godziny zaparkowania), wyjazd
(oblicza optatg nalezng za czas parkowania), ustalenie optaty i okresu jej naliczania, wyswietlenie listy
pojazdow stojacych aktualnie na parkingu.

Kod zrodtowy z opisem. Na poczatku otwieramy w IDLE nowe okno edycji i od razu zapisujemy pod nazwag
‘parking.py’.

Program korzystat bedzie z trzech modutow: shelve — do obstugi bazy danych, sys — do wychodzenia z
programu, time — do obstugi czasu. Piszemy wigc:

import shelve, sys
from time import *

Kazda z funkcji programu ujmiemy w osobnym podprogramie. Zaczniemy od zmiany wysokosci oplaty
parkingowej.

zmiana optat
def zmiana stawki () :
global baza, stawka, okres # zmienne globalne
print "\nZmiana wysokos$ci optat\n"
print "Biezaca stawka wynosi %.2f zl za %$i minut(y)\n" % (stawka,okres)
try:
s=float (raw_input ("Podaj nowa wysoko$¢ optat: "))
o=int (raw_input ("Podaj nowy czas naliczania w minutach: "))

except:
print "Biad wprowadzania danych! Stawka nie zostata zmieniona!"
return
try:
baza[' stawka']=(s,0) # zapisujemy w bazie
except:
print "Biad zapisu danych! Stawka nie zostata zmieniona!"
else:
stawka=s # kopiujemy do
okres=o0 # zmiennych globalnych

Zmienne stawka I okres sg globalne, gdyz korzystaé¢ z nich beda rowniez inne funkcje. Wprowadzone
warto$ci probujemy zapisa¢ w bazie, a dopiero kiedy to si¢ uda — kopiujemy do zmiennych globalnych (taka
kolejnos¢ jest konieczna by zachowacé spdjnos¢ danych w bazie i pamigci w kazdym przypadku).
Inicjalizacja bazy danych ma za zadanie otworzy¢ baze 1 zaladowac z niej wczesnie zapisang stawke. Jezeli
baza jest $wieza, stawka musi by¢ wprowadzona wilasnorgcznie przez uzytkownika (poprzez wywolanie
funkcji zdefiniowanej przed chwilg; wczesniej, aby w niej unikng¢ btedu, inicjalizujemy zmienne globalne
pierwszymi lepszymi warto$ciami).

Stawke zapisujemy w kluczu ' stawka'. Mozemy sobie na to pozwolié, przyjmujac, Ze nie jest to
dopuszczalny numer rejestracyjny w Polsce.

#inicjalizacja bazy danych

def init () :
global baza, stawka, okres
try:
baza = shelve.open ('baza parkingowa') # otwarcie
except:

print "Biad krytyczny! Baza danych nie zostata otwarta!"
sys.exit (0) # wyjscie z programu
print "Inicjalizacja udana. Baza danych zostata otwarta."
if ' stawka' in baza.keys(): # czy juz istnieje?
(stawka,okres)=baza[' stawka'] # tak - kopiujemy stawki
else:
(stawka, okres)=(0.0,1) # nie -
zmiana_ stawki () # wczytujemy od uzytkownika

Kolejna funkcja zajmuje si¢ wyswietlaniem menu gtownego programu. Wyswietla ono dostepne funkcje 1
daje mozliwo$¢ wyboru jednej z nich, zwracajac rezultat na zewnatrz. Zwré6¢my uwage, ze z napisu

wprowadzonego przez uzytkownika bierzemy jedynie pierwszy znak i konwertujemy go na duzg literg (by
unikng¢ probleméw, gdy uzytkownik ma wytaczony klawisz CAPSLOCK).

menu gtdéwne programu

def menu() :
while True:
print
print '-'*70
print 'PARKING'.center (70)
print '-'*70
print '[W] Wjazd [E] Wyjazd [P] Pojazdy [S] Stawka [K] Koniec'.center (70)
print '-'*70
w=raw_input () [0] .upper () # pierwszy znak (duza litera)
if w in 'WEPSK': # znany?
return w # tak - zwracamy go
print 'Nieznane polecenie -',

Funkcja pojazdy wyswietla liste pojazdéw znajdujacych si¢ na parkingu. Dane pobierane sg z bazy 1
wyswietlane z uzyciem prostego formatowania.

lista pojazddw na parkingu
def pojazdy():
global baza

print
print 'Lista pojazddédw na parkingu'.center (33)
print '-'*33
print '|'+'Nr rej.'.center(10)+'|'+'Godz. parkowania'.center(20)+"
print '-'*33
for rej,godz in baza.items():

if rej!=' stawka':

print "[%9s |" % rej,strftime("%H:%M (%Y-%m-%d)",godz),"'|"

print '-'*33

Wyjazd pojazdu wymaga upewnienia si¢ czy dany pojazd rzeczywiscie byt zaparkowany, nastgpnie
obliczenia naleznej optaty, a wreszcie usuni¢cia pojazdu z bazy. Aby wyliczy¢ optate musimy: zamienic¢
czas parkowania i obecny na sekundy (przy uzyciu mktime), wyliczy¢ ich roznicg, przeliczy¢ na minuty (60
sekund w minucie), przeliczy¢ na jednostki taryfowe (uwzgledniajac zasade zaliczania kazdej rozpoczetej
jednostki — dodajemy po prostu liczbe minut o 1 mniejszg od petnego okresu), a na koncu przemnozyé
rezultat przez wysokos¢ oplaty.

rejestracja wyjazdu pojazdu
def wyjazd() :
global baza, stawka, okres
print 'Wyjazd pojazdu - godzina',strftime("%$H:%M (%Y-%m-%d)")
rej=raw_input ('Podaj numer rejestracyjny pojazdu: ')
if rej in baza.keys(): # czy taki byl zaparkowany?
godz=bazal[re]]
print "Godzina wjazdu:",strftime ("$H:%M (%$Y¥Y-%m-%d)",godz)
minuty=int (mktime (localtime ())-mktime (godz)) /60
jednostki= (minuty+tokres-1) /okres # naliczamy za rozpoczeta
print "\nDo zaplaty: %$.2f z1" % (jednostki*stawka)
del bazal[rej] # usuwamy wpis
else:
print "Biad! Takiego pojazdu nie ma na parkingu!"

Rejestracja wjazdu pojazdu jest znacznie prostsza, wymaga jedynie upewnienia si¢, czy dany pojazd aby nie
byl juz zaparkowany i dopisania numeru rejestracyjnego oraz aktualnego czasu do bazy. Przyjmujemy
numery rejestracyjne nie dtuzsze niz 9 znakow; nie przyjmujemy rejestracji ' stawka’, by uniemozliwié
uszkodzenie zapisu stawek.

rejestracja wjazdu pojazdu
def wjazd() :
global baza

godz=localtime ()

print 'Wjazd pojazdu - godzina',strftime ("%H:%$M (%Y-%m-%d)",godz)
rej=raw_input ('Podaj numer rejestracyjny pojazdu: ') [:9]

if rej=='_stawka': return # zabezpieczenie

if rej not in baza.keys{(): # nie jest zaparkowany?

baza[rej]l=godz
print "Wprowadzono."
else:
print "Biad! Taki pojazd juz jest na parkingu!"

Z programu gtownego wylaczyliS§my jeszcze funkcje wywotujaca odpowiedni podprogram w zaleznos$ci od
wyboru uzytkownika.

realizacja wyboru uzytkownika
def wybor():
while True:
w=menu ()
if w=='K':
break
elif w=='S"':
zmiana stawki ()
elif w=='P':
pojazdy ()
elif w=='E"':
wyJjazd ()
elif w=="W":
wjazd ()

Sam program gtowny jedynie otwiera baze, wywoluje funkcje wybor, a na koncu zamyka bazg.

program gtdwny

init () # otwarcie bazy
try:

wybor () # interfejs uzytkownika
except:

print "Wystapit powazny biad."
baza.close () # zamkniecie bazy

Przyktad uruchomienia. Wciskamy przycisk F5. Jako, Ze jest to pierwsze uruchomienie programu,
zostaniemy poproszeni o podanie wysokosci optat.

>>> RESTART
>>>
Inicjalizacja udana. Baza danych zostata otwarta.

Zmiana wysokos$ci opltat

Biezgaca stawka wynosi 0.00 z1 za 1 minut (y)

Podaj nowa wysokos$é opltat:

Wprowadzamy np. ponizsze wartosci (pamigtajmy o kropce dziesigtne;j!).

Podaj nowa wysokos$é optat: 1.50
Podaj nowy czas naliczania w minutach: 30

(W] Wjazd [E] WyJjazd [P] Pojazdy [S] Stawka [K] Koniec

Kiedy pojawi si¢ menu gtowne wybieramy opcje ‘W’ (potwierdzamy klawiszem ENTER) 1 wprowadzamy
(oczywiscie, godziny odpowiadaja wprowadzaniu danych przez autora):

Wiazd pojazdu - godzina 21:10 (2006-09-18)
Podaj numer rejestracyjny pojazdu: 723539542
Wprowadzono.

Kiedy ponownie pojawi si¢ menu gtéwne wybieramy znowu opcje ‘W’ (potwierdzamy klawiszem ENTER)
i wprowadzamy drugie auto:

Wjazd pojazdu - godzina 21:11 (2006-09-18)
Podaj numer rejestracyjny pojazdu: SZF8510
Wprowadzono.

Zaparkujemy jeszcze trzecie auto:

Wijazd pojazdu - godzina 21:11 (2006-09-18)
Podaj numer rejestracyjny pojazdu: Z0 JOLA
Wprowadzono.

Tym razem z menu wybieramy opcj¢ ‘P’. Zobaczymy (przypominam, ze czasy bedg si¢ r6zni¢) mniej wigcej
taki widok:

Lista pojazddéw na parkingu

23539542	21:10 (2006-09-18)
20 JOLA	21:11 (2006-09-18)
SZF8510	21:11 (2006-09-18)

Sprawdzimy teraz, czy dane rzeczywiscie sg przechowywane trwale. WyjdZmy z programu wybierajac z
menu opcje ‘K’. Nastepnie uruchommy go ponownie. Powinnismy zobaczy¢:

>>> RESTART
>>>
Inicjalizacja udana. Baza danych zostata otwarta.

Jak wida¢ stawka zostala przeczytana z bazy 1 nie ma potrzeby jej ponownego wprowadzania. Jezeli
wybierzemy opcje ‘P’, powinnis§my zobaczy¢ list¢ identyczng jak przed wyjsciem z programu:

Lista pojazddéw na parkingu

2539542	21:10 (2006-09-18)
20 JOLA	21:11 (2006-09-18)
SzZF8510	21:11 (2006-09-18)

Sprobujemy teraz ‘wyjechaé’ jednym z aut. Wybieramy ‘E’:

Wyjazd pojazdu - godzina 21:15 (2006-09-18)
Podaj numer rejestracyjny pojazdu: 72539542
Godzina wjazdu: 21:10 (2006-09-18)

Do zapitaty: 1.50 z1

Sprawdzamy stan biezacy:

Lista pojazddéw na parkingu

| Nr rej. | Godz. parkowania |

| z0 JOLA | 21:11 (2006-09-18) |
| SZF8510 | 21:11 (2006-09-18) |

Dalszg zabawe z programem pozostawiam Wam.

Cwiczenia kontrolne

Cwiczenie L. Napisz program ‘parking2.py’ rézniacy si¢ od programu ‘parking.py’ tym, ze klienci parkingu
mogg posiada¢ miesi¢czne karty abonentowi (doda¢ funkcje sprzedazy). Wjazdy i wyjazdy samochodéw
takich klientow sg rejestrowane, jednak przy wyjezdzie z parkingu optata nie jest pobierana, o ile nie
abonament nie skonczyt si¢ (wyswietla si¢ tylko informacja o liczbie pozostatych dni). Jezeli abonament
danego auta skonczyt sie, przy jego najblizszym wjezdzie lub wyjezdzie uzytkownik jest o tym
informowany i moze wykupi¢ nowy abonament lub z niego zrezygnowac (i w konsekwencji wnies$¢
standardowg optate).

Cwiczenie I1. Napisz program ‘narzedzia.py’ shuzacy do obstugi narzedziowni. Program ma umozliwiaé
wykonywanie nast¢pujacych funkcji: dopisanie nowego narzedzia na list¢, zmiana liczby sztuk narzedzia na
liscie (w tym mozliwos$¢ kompletnego usunig¢cia narzgdzia, gdy liczba sztuk spadnie do zera), wydanie
narzedzia (zapamigtanie godziny 1 nazwiska pracownika biorgcego narzedzie), zwrot narzedzia, lista
wszystkich narzedzi, lista dostepnych narzedzi, lista wydanych narzedzi.

